Graph Information Aggregation Cross-Domain Few-Shot Learning for Hyperspectral Image Classification

计算机科学 图形 高光谱成像 模式识别(心理学) 人工智能 领域(数学分析) 图像(数学) 理论计算机科学 数学 数学分析
作者
Yuxiang Zhang,Wei Li,Mengmeng Zhang,Shuai Wang,Ran Tao,Qian Du
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (2): 1912-1925 被引量:161
标识
DOI:10.1109/tnnls.2022.3185795
摘要

Most domain adaptation (DA) methods in cross-scene hyperspectral image classification focus on cases where source data (SD) and target data (TD) with the same classes are obtained by the same sensor. However, the classification performance is significantly reduced when there are new classes in TD. In addition, domain alignment, as one of the main approaches in DA, is carried out based on local spatial information, rarely taking into account nonlocal spatial information (nonlocal relationships) with strong correspondence. A graph information aggregation cross-domain few-shot learning (Gia-CFSL) framework is proposed, intending to make up for the above-mentioned shortcomings by combining FSL with domain alignment based on graph information aggregation. SD with all label samples and TD with a few label samples are implemented for FSL episodic training. Meanwhile, intradomain distribution extraction block (IDE-block) and cross-domain similarity aware block (CSA-block) are designed. The IDE-block is used to characterize and aggregate the intradomain nonlocal relationships and the interdomain feature and distribution similarities are captured in the CSA-block. Furthermore, feature-level and distribution-level cross-domain graph alignments are used to mitigate the impact of domain shift on FSL. Experimental results on three public HSI datasets demonstrate the superiority of the proposed method. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TNNLS_Gia-CFSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助camellia采纳,获得10
刚刚
星城发布了新的文献求助10
刚刚
脑洞疼应助jtj采纳,获得10
刚刚
1秒前
1秒前
楷哆哆发布了新的文献求助30
1秒前
1秒前
化雨发布了新的文献求助10
2秒前
自由面包完成签到,获得积分10
2秒前
3秒前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
3秒前
3秒前
菲菲发布了新的文献求助10
4秒前
科研通AI5应助啦啦咔嘞采纳,获得10
5秒前
上官若男应助科研采纳,获得10
6秒前
wang发布了新的文献求助10
6秒前
6秒前
达da完成签到,获得积分10
6秒前
7秒前
云海完成签到,获得积分10
7秒前
爆米花应助招财小茗采纳,获得10
8秒前
lalala发布了新的文献求助10
9秒前
9秒前
nian发布了新的文献求助10
9秒前
爱民完成签到,获得积分10
9秒前
拾光完成签到,获得积分10
9秒前
说谎还是伟大完成签到,获得积分10
10秒前
haikuotian举报Luanrf求助涉嫌违规
10秒前
liz发布了新的文献求助10
10秒前
善学以致用应助camellia采纳,获得10
11秒前
11秒前
江彪完成签到,获得积分10
12秒前
12秒前
rick3455发布了新的文献求助50
12秒前
彭于晏应助故意的秋烟采纳,获得10
13秒前
化雨完成签到,获得积分10
13秒前
14秒前
Archy发布了新的文献求助10
14秒前
高贵的帽子完成签到 ,获得积分20
14秒前
快乐小狗发布了新的文献求助30
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463