Determination of Survival of Gastric Cancer Patients With Distant Lymph Node Metastasis Using Prealbumin Level and Prothrombin Time: Contour Plots Based on Random Survival Forest Algorithm on High-Dimensionality Clinical and Laboratory Datasets

医学 随机森林 算法 生存分析 内科学 肿瘤科 存活率 逻辑回归 转移 淋巴结 癌症 人工智能 数学 计算机科学
作者
Cheng Zhang,Minmin Xie,Yi Zhang,Xiaopeng Zhang,Chong Feng,Zhijun Wu,Ying Feng,Yahui Yang,Hui Xu,Tai Ma
出处
期刊:Journal of Gastric Cancer [The Korean Gastric Cancer Association]
卷期号:22 (2): 120-120 被引量:4
标识
DOI:10.5230/jgc.2022.22.e12
摘要

This study aimed to identify prognostic factors for patients with distant lymph node-involved gastric cancer (GC) using a machine learning algorithm, a method that offers considerable advantages and new prospects for high-dimensional biomedical data exploration.This study employed 79 features of clinical pathology, laboratory tests, and therapeutic details from 289 GC patients whose distant lymphadenopathy was presented as the first episode of recurrence or metastasis. Outcomes were measured as any-cause death events and survival months after distant lymph node metastasis. A prediction model was built based on possible outcome predictors using a random survival forest algorithm and confirmed by 5×5 nested cross-validation. The effects of single variables were interpreted using partial dependence plots. A contour plot was used to visually represent survival prediction based on 2 predictive features.The median survival time of patients with GC with distant nodal metastasis was 9.2 months. The optimal model incorporated the prealbumin level and the prothrombin time (PT), and yielded a prediction error of 0.353. The inclusion of other variables resulted in poorer model performance. Patients with higher serum prealbumin levels or shorter PTs had a significantly better prognosis. The predicted one-year survival rate was stratified and illustrated as a contour plot based on the combined effect the prealbumin level and the PT.Machine learning is useful for identifying the important determinants of cancer survival using high-dimensional datasets. The prealbumin level and the PT on distant lymph node metastasis are the 2 most crucial factors in predicting the subsequent survival time of advanced GC.ChiCTR Identifier: ChiCTR1800019978.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
陈陌陌发布了新的文献求助10
1秒前
wjw发布了新的文献求助10
1秒前
HEAUBOOK应助小s采纳,获得10
1秒前
顾矜应助郭振宇采纳,获得10
1秒前
西贝完成签到,获得积分10
1秒前
步愁发布了新的文献求助10
1秒前
2秒前
自由宛筠发布了新的文献求助10
2秒前
感性的大炮完成签到,获得积分10
3秒前
3秒前
Sky36001发布了新的文献求助20
3秒前
海不扬波完成签到,获得积分10
3秒前
yangou发布了新的文献求助10
4秒前
Aston完成签到,获得积分10
4秒前
neilqin完成签到,获得积分10
5秒前
简单完成签到,获得积分10
5秒前
南墙以南完成签到 ,获得积分10
5秒前
zwz1015发布了新的文献求助10
6秒前
6秒前
airyletter完成签到,获得积分10
7秒前
xiaokl发布了新的文献求助10
7秒前
7秒前
8秒前
粗犷的怜梦完成签到 ,获得积分10
8秒前
星辰大海发布了新的文献求助10
8秒前
8秒前
科研通AI5应助liang采纳,获得10
9秒前
搜集达人应助勤恳的越泽采纳,获得10
9秒前
10秒前
10秒前
10秒前
李健应助gao采纳,获得30
11秒前
11秒前
科研小白完成签到,获得积分10
11秒前
11秒前
11秒前
bing应助zxcv23采纳,获得10
12秒前
深情安青应助自由宛筠采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907