Modeling Fluid Interfaces During Cementing Using a 3D Mud Displacement Simulator

套管 钻井液 石油工程 环空(植物学) 流离失所(心理学) 钻孔 计算机科学 机械工程 地质学 岩土工程 钻探 工程类 材料科学 心理学 复合材料 心理治疗师
作者
Mark Savery,Robert Darbe,Wilson C. Chin
标识
DOI:10.4043/18513-ms
摘要

Abstract In completion of oil and gas wells, cementing operations are employed to provide zonal isolation, a means to prevent wellbore fluids from contaminating sensitive zones such as freshwater aquifers. Perhaps the most important factor engineers and operators should consider for successful cementing is adequate drilling-fluid removal, or "mud displacement." To help optimize mud removal, the primary technique used is to pump a spacer fluid with modified rheology that creates a favorable fluid-fluid interface to enhance mud displacement. In many instances, it is highly desirable to monitor how this interface evolves over time. Fluid intermingling may inhibit the ability of a fluid to perform its intended purpose, for example, intermixing of spacer fluid with cement slurry may lead to contamination of the cement. This contamination may cause an undesirable failure of the setting of the cement and, consequently, a significant increase in cost because of increased wait time or remedial repair. Therefore, a three-dimensional (3-D) simulator modeling the intermixing of wellbore fluids in a highly eccentric annulus with casing reciprocation and rotation has been developed. The computational system is formulated on a general curvilinear coordinate system whose boundaries can conform to irregular boreholes such as those with washouts. Unlike existing models limited to weakly eccentric annuli without casing movement, the present simulator handles multiple real-world effects and efficiently performs trade-off studies that can enable more economical and effective cementing jobs. The finite difference model provides visual output useful in prejob design and post-job analysis. Among these outputs are 3-D color plots illustrating axial velocity, concentration, viscosity, and density evolution. Introduction Efficient mud displacement is perhaps the most important factor in providing a successful cement job. The primary technique used today is to pump a spacer fluid ahead of the cement slurry. Several other factors that directly impact mud displacement are also known, including wellbore geometry, mud conditioning, casing movement via reciprocation and rotation, casing centralization, and optimizing the pump rate.1,2 However, it is often unknown the extent to which these variables affect mud displacement, especially when applied in combination with one another. Even a relatively straightforward cementing operation can quickly become a challenging scenario with multiple variables. The industry has conducted numerous large-scale physical studies3–8 over the last half-century to empirically evaluate the importance of these factors on displacement efficiency. More recently, however, a number of studies have taken advantage of computational numerical methods to describe the different aspects of the mud displacement process in annular geometries. Tehrani et al.9 discuss combined theoretical and experimental studies of laminar displacement in inclined eccentric annuli. The authors appropriately couple the momentum equation with the concentration equation suggested earlier by Landau and Lifshitz.10 Cui and Liu11 address helical flow in eccentric annuli based on the bipolar coordinate system. Pelipenko and Frigaard12 examine fluidfluid displacement in a two-dimensional (2-D) "narrow annuli" without casing reciprocation or rotation. The well known model discussed by Escudier et al.13,14 considers non- Newtonian viscous helical flow in eccentric annuli for a single fluid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
5秒前
leo发布了新的文献求助10
6秒前
梦华老师发布了新的文献求助10
8秒前
执着烧鹅完成签到 ,获得积分10
10秒前
春春完成签到,获得积分10
12秒前
梦华老师完成签到,获得积分10
15秒前
17秒前
爱吃猫的鱼完成签到,获得积分10
19秒前
wishe完成签到,获得积分10
22秒前
ZYN完成签到,获得积分10
28秒前
32秒前
33秒前
36秒前
leo发布了新的文献求助10
39秒前
邱寒烟aa完成签到 ,获得积分0
43秒前
鳄鱼队长完成签到,获得积分10
44秒前
123完成签到 ,获得积分10
53秒前
54秒前
天天开心完成签到 ,获得积分10
55秒前
111完成签到 ,获得积分10
1分钟前
sun_lin完成签到 ,获得积分10
1分钟前
1分钟前
椒盐皮皮虾完成签到 ,获得积分10
1分钟前
jfw完成签到 ,获得积分10
1分钟前
leo发布了新的文献求助10
1分钟前
qingqingiqng完成签到,获得积分10
1分钟前
1分钟前
石子完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
可耐的寒松完成签到,获得积分10
1分钟前
科研人发布了新的文献求助10
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
mark33442完成签到,获得积分10
1分钟前
懵懂的仙人掌完成签到,获得积分10
1分钟前
mimosal完成签到,获得积分0
1分钟前
葛儿完成签到 ,获得积分10
1分钟前
老张完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353