A comprehensive review of AI-Based detection of Arrhythmia using Electrocardiogram (ECG)

计算机科学 可靠性 数据科学 范围(计算机科学) 人工智能 资源(消歧) 机器学习 数据挖掘 政治学 计算机网络 程序设计语言 法学
作者
Ahtisham Ayyub,Christos Politis,Muhammad Arslan Usman
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:196: 110594-110594
标识
DOI:10.1016/j.compbiomed.2025.110594
摘要

The success of AI-assisted decision-making systems over traditional methods has driven extensive research across various real-world applications. In the past decade, the application of AI systems for analysing physiological signals, particularly electrocardiograms (ECG), has attracted considerable attention. While several survey papers have explored this domain, they often face limitations, for instance outdated research coverage, narrow scope, inadequate evaluation of study quality and publication credibility or a lack of statistical insights. To address these gaps, this review rigorously selected research articles from high-impact journals and top-tier conferences, ensuring reliable and validated findings. We comprehensively reviewed 219 research articles, making this paper a valuable resource for researchers interested in the intersection of AI and ECG analysis. Our review provides an in-depth analysis of employed techniques, obtained results, and emerging trends, offering insights beneficial to researchers at all levels. Additionally, we present a statistical analysis of the reviewed studies to offer a broader understanding of this research area. A key contribution of this paper is the application of Pearson's correlation to examine relationships among performance metrics such as accuracy, sensitivity, specificity, and F1-score. This analysis highlights how these metrics interact and influence each other across various methodologies, offering deeper insights into model performance and optimisation strategies in ECG analysis. Finally, we address existing challenges and propose new research directions for further exploration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助了该采纳,获得10
2秒前
JIN发布了新的文献求助10
3秒前
超帅连虎应助比巴卜采纳,获得10
3秒前
汉堡包应助比巴卜采纳,获得10
3秒前
maidida完成签到,获得积分10
4秒前
tao发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
asdfqwer发布了新的文献求助10
9秒前
orixero应助shinn采纳,获得10
9秒前
9秒前
9秒前
高等游民发布了新的文献求助10
10秒前
六七七发布了新的文献求助10
11秒前
11秒前
白白白完成签到,获得积分20
11秒前
12秒前
isle完成签到 ,获得积分20
12秒前
Hello应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得20
13秒前
打打应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
shu发布了新的文献求助10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154347
求助须知:如何正确求助?哪些是违规求助? 3690172
关于积分的说明 11656838
捐赠科研通 3382352
什么是DOI,文献DOI怎么找? 1856097
邀请新用户注册赠送积分活动 917672
科研通“疑难数据库(出版商)”最低求助积分说明 831094