The reliability of categorical triple collocation for evaluating soil freeze/thaw datasets

范畴变量 排名(信息检索) 均方误差 环境科学 水准点(测量) 比例(比率) 统计 计算机科学 样本量测定 航程(航空) 数学 遥感 数据挖掘 人工智能 材料科学 地图学 地质学 地理 复合材料
作者
Heng Li,Linna Chai,Wade T. Crow,Jianzhi Dong,Shaomin Liu,Shaojie Zhao
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:281: 113240-113240 被引量:10
标识
DOI:10.1016/j.rse.2022.113240
摘要

Seasonal soil freeze/thaw (FT) state transition plays a critical role in the range of ecosystem, hydrological and biogeochemical processes. A thorough and large-scale validation of remote-sensed or model-based FT products is therefore quite important. Previous validation studies have applied categorical triple collocation (CTC) as a cross-validation method to estimate the relative performance ranking of various FT datasets, including in situ observations. While CTC has proven useful for qualitatively evaluating FT datasets, quantitative estimates of classification accuracy, which has not yet been assessed against direct validation results, would be even more valuable. To fill this gap, we compare CTC estimated performance rankings and quantitative classification accuracies with those obtained from dense soil temperature and sparse surface temperature observations from April 2015 through December 2019. CTC estimated classification accuracies are found to be strongly correlated (r > 0.927) with dense ground observations, along with very low bias (< 0.038) and RMSE (< 0.086). However, the bias and RMSE of CTC-estimated freeze accuracies are significantly inflated when sparse surface temperatures are used instead as the benchmark. Small errors are found with low absolute values (<0.317) of CTC-estimated class imbalance and a sample size of at least 365. CTC can generally provide the correct performance ranking for each product within a triplet - with low risk of incorrectly ranking all three products. In addition, a sample size of 10–160 is adequate for CTC to provide the correct ranking for the highest- or lowest-ranked product. This improves our knowledge and understanding of the reliability of the CTC method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
思源应助寒雪采纳,获得10
2秒前
yhl发布了新的文献求助10
5秒前
羊羊羊完成签到 ,获得积分10
5秒前
调皮秋完成签到,获得积分20
5秒前
QIQI发布了新的文献求助10
6秒前
kkkkk完成签到,获得积分10
7秒前
科研通AI2S应助wxinli采纳,获得10
7秒前
MchemG应助chen采纳,获得20
8秒前
任性的冰烟完成签到,获得积分10
8秒前
8秒前
9秒前
April发布了新的文献求助10
12秒前
mmmc大好发布了新的文献求助10
15秒前
FashionBoy应助zhangsudi采纳,获得10
17秒前
18秒前
renshiq发布了新的文献求助10
18秒前
科研通AI5应助心怡采纳,获得30
20秒前
20秒前
shuai完成签到,获得积分10
20秒前
jellion发布了新的文献求助10
23秒前
23秒前
pluto应助科研通管家采纳,获得20
24秒前
天天快乐应助科研通管家采纳,获得30
24秒前
orixero应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
悠夏sunny完成签到,获得积分10
25秒前
KK发布了新的文献求助10
25秒前
mmmc大好完成签到,获得积分10
28秒前
28秒前
KIORking发布了新的文献求助10
28秒前
29秒前
29秒前
Akim应助聪慧语山采纳,获得30
30秒前
深情安青应助jellion采纳,获得10
31秒前
32秒前
34秒前
心怡发布了新的文献求助30
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825