Deep learning based MRI reconstruction with transformer

计算机科学 人工智能 深度学习 瓶颈 卷积神经网络 迭代重建 编码(集合论) 人工神经网络 模式识别(心理学) 一致性(知识库) 计算机视觉 嵌入式系统 集合(抽象数据类型) 程序设计语言
作者
Zhengliang L. Wu,Weibin Liao,Yan Chao,Mangsuo Zhao,Guowen Liu,Ning Ma,Xuesong Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:233: 107452-107452 被引量:31
标识
DOI:10.1016/j.cmpb.2023.107452
摘要

Magnetic resonance imaging (MRI) has become one of the most powerful imaging techniques in medical diagnosis, yet the prolonged scanning time becomes a bottleneck for application. Reconstruction methods based on compress sensing (CS) have made progress in reducing this cost by acquiring fewer points in the k-space. Traditional CS methods impose restrictions from different sparse domains to regularize the optimization that always requires balancing time with accuracy. Neural network techniques enable learning a better prior from sample pairs and generating the results in an analytic way. In this paper, we propose a deep learning based reconstruction method to restore high-quality MRI images from undersampled k-space data in an end-to-end style. Unlike prior literature adopting convolutional neural networks (CNN), advanced Swin Transformer is used as the backbone of our work, which proved to be powerful in extracting deep features of the image. In addition, we combined the k-space consistency in the output and further improved the quality. We compared our models with several reconstruction methods and variants, and the experiment results proved that our model achieves the best results in samples at low sampling rates. The source code of KTMR could be acquired at https://github.com/BITwzl/KTMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Steven发布了新的文献求助10
1秒前
river123完成签到,获得积分10
1秒前
JamesPei应助dennisysz采纳,获得10
2秒前
可爱的函函应助dennisysz采纳,获得10
2秒前
彭于晏应助dennisysz采纳,获得10
2秒前
Orange应助dennisysz采纳,获得10
2秒前
烟花应助dennisysz采纳,获得10
2秒前
ding应助dennisysz采纳,获得10
2秒前
汉堡包应助dennisysz采纳,获得10
2秒前
Ava应助dennisysz采纳,获得10
2秒前
善学以致用应助dennisysz采纳,获得10
2秒前
无花果应助dennisysz采纳,获得10
2秒前
2秒前
2秒前
若邻发布了新的文献求助10
4秒前
hansJAMA发布了新的文献求助10
5秒前
王博士完成签到,获得积分10
6秒前
Huang完成签到 ,获得积分0
7秒前
lkkkkkk发布了新的文献求助30
8秒前
10秒前
占万声完成签到,获得积分10
12秒前
俊逸十八完成签到 ,获得积分10
14秒前
15秒前
ding应助hansJAMA采纳,获得30
20秒前
21秒前
艺响天开发布了新的文献求助10
22秒前
贪玩的访风完成签到 ,获得积分10
25秒前
lkkkkkk完成签到,获得积分10
26秒前
Owen应助77采纳,获得10
27秒前
熊i发布了新的文献求助30
27秒前
qiyun96发布了新的文献求助10
32秒前
36秒前
77发布了新的文献求助10
39秒前
淡然白安发布了新的文献求助30
40秒前
科研通AI5应助自由的沅采纳,获得30
42秒前
深情安青应助77采纳,获得10
44秒前
orixero应助救驾来迟采纳,获得10
45秒前
46秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133