Multirate Mixture Probability Principal Component Analysis for Process Monitoring in Multimode Processes

主成分分析 采样(信号处理) 故障检测与隔离 算法 计算机科学 组分(热力学) 概率逻辑 过程(计算) 水准点(测量) 随机过程 数据挖掘 数学 人工智能 统计 滤波器(信号处理) 执行机构 计算机视觉 热力学 地理 操作系统 物理 大地测量学
作者
Yuting Lyu,Le Zhou,Ya Cong,Hongbo Zheng,Zhihuan Song
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 2027-2038 被引量:38
标识
DOI:10.1109/tase.2023.3253285
摘要

In the multirate sampling processes, the process data are usually collected from various operating conditions and display multimodal characteristics. To monitor these multirate multimode processes, a multirate mixture probability principal component analysis model is proposed for process modeling and fault detection. In this model, the local multirate models are built first for each mode and all of them are subsequently fused with the mixture modeling approach. Such model is able to deal with multirate data with various amount of sampling rates, contributing to a remarkable fault detection and mode identification performance by utilizing all the available measurements even if some variables are unobserved. Then the expectation $-$ maximum algorithm is utilized to estimate all the model parameters in the probabilistic framework and the corresponding monitoring method is also developed based on the constructed models. Finally, the effectiveness of the proposed method is demonstrated through a PRONTO benchmark and a real multimode ammonia synthesis process. Note to Practitioners —Motivated by the practical problem of ununiform sampling intervals in multimode processes, this paper proposes a novel multirate mixture probability principle component analysis model for processes modeling and monitoring. In this model, all the available observations with different sampling rates can be incorporated, which contributes greatly to capturing the multimodal characteristics within the industrial processes. Such ability is the key to realize multimode process monitoring, evaluation, fault diagnosis, and process optimization. In addition, although this paper only focuses on the continuous multirate data in industry, it is equally applicable to other forms of multirate data, such as images and videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实白梦完成签到,获得积分10
刚刚
2秒前
hengha完成签到,获得积分20
2秒前
lll发布了新的文献求助10
2秒前
快乐访旋发布了新的文献求助10
3秒前
3秒前
3秒前
ddstty完成签到,获得积分10
3秒前
凉拌折耳根完成签到 ,获得积分10
4秒前
男研选手发布了新的文献求助10
4秒前
幸福语儿发布了新的文献求助20
5秒前
zz完成签到,获得积分10
7秒前
7秒前
ardejiang发布了新的文献求助30
7秒前
MHY完成签到,获得积分20
7秒前
pny发布了新的文献求助10
8秒前
搜集达人应助c123采纳,获得10
9秒前
9秒前
科研通AI5应助JW采纳,获得10
9秒前
11秒前
ding应助大橘采纳,获得10
12秒前
hyhyhyhy发布了新的文献求助10
12秒前
信步发布了新的文献求助10
13秒前
lll完成签到 ,获得积分10
13秒前
我是老大应助希希采纳,获得10
15秒前
zzz完成签到,获得积分10
15秒前
香蕉觅云应助Jane采纳,获得10
16秒前
清新的幻桃完成签到,获得积分10
17秒前
Akim应助hyhyhyhy采纳,获得10
20秒前
21秒前
Fitz完成签到,获得积分10
21秒前
缓慢采柳发布了新的文献求助10
22秒前
23秒前
男研选手完成签到,获得积分10
24秒前
潘妍西关注了科研通微信公众号
24秒前
橘子海完成签到 ,获得积分10
24秒前
高兴的海亦发布了新的文献求助100
24秒前
24秒前
英姑应助扎心采纳,获得10
24秒前
所所应助wuwuwu采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783709
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239058
捐赠科研通 3044346
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759171