作者
Yi‐Feng Su,D.L. Yin,Xinmao Zhao,Tong Hu,Long Liu
摘要
The integration of Deep Learning with sensor technologies has significantly advanced the field of intelligent sensing and decision making by enhancing perceptual capabilities and delivering sophisticated data analysis and processing functionalities. This review provides a comprehensive overview of the synergy between Deep Learning and sensors, with a particular focus on the applications of triboelectric nanogenerator (TENG)-based self-powered sensors combined with artificial intelligence (AI) algorithms. First, the evolution of Deep Learning is reviewed, highlighting the advantages, limitations, and application domains of several classical models. Next, the innovative applications of intelligent sensors in autonomous driving, wearable devices, and the Industrial Internet of Things (IIoT) are discussed, emphasizing the critical role of neural networks in enhancing sensor precision and intelligent processing capabilities. The review then delves into TENG-based self-powered sensors, introducing their self-powered mechanisms based on contact electrification and electrostatic induction, material selection strategies, novel structural designs, and efficient energy conversion methods. The integration of TENG-based self-powered sensors with Deep Learning algorithms is showcased through their groundbreaking applications in motion recognition, smart healthcare, smart homes, and human–machine interaction. Finally, future research directions are outlined, including multimodal data fusion, edge computing integration, and brain-inspired neuromorphic computing, to expand the application of self-powered sensors in robotics, space exploration, and other high-tech fields. This review offers theoretical and technical insights into the collaborative innovation of Deep Learning and self-powered sensor technologies, paving the way for the development of next-generation intelligent systems.