Constructing Built-In Electric Field in Hierarchical-Flower Heterostructure for High-Performance Serum Metabolic Assay

化学 电场 异质结 领域(数学) 纳米技术 光电子学 量子力学 物理 材料科学 数学 纯数学
作者
Tao Ning,Penglong Cao,Jun Yang,Tianrun Xu,Di Yu,Ting Li,Ting Wang,Chunxiu Hu,Xinyu Liu,Xianzhe Shi,Guowang Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (21): 11211-11220 被引量:1
标识
DOI:10.1021/acs.analchem.5c01100
摘要

Laser desorption ionization mass spectrometry (LDI-MS) is a critical platform for high-throughput nontargeted metabolomics analysis in clinical diagnosis. However, traditional organic matrices inherently suffer from background interference in the low-mass range and exhibit low sensitivity for small molecule detections. Heterostructure has been regarded as an effective structure for high charge carrier mobility and tunable band gaps, which can enhance ion transfer efficiency and photothermal conversion during the LDI-MS process. In this work, Fe3O4/MoS2 nanoparticles with hierarchical-flower heterostructure were facilely synthesized as a novel matrix of LDI-MS to enhance the detection of serum metabolic profilings (SMPs), which was further applied for the early diagnosis of lung cancer. The heterostructure of Fe3O4/MoS2 can construct a built-in electric field to inhibit electron-hole recombination. Additionally, its abundant defect structures synergistically accelerate interfacial charge transfer, thereby promoting desorption and ionization processes. As a result, the newly developed Fe3O4/MoS2 nanomatrix demonstrated exceptional performance in LDI-MS, significantly surpassing the conventional matrices by at least 1 order of magnitude. Subsequently, information-rich SMPs were successfully obtained from merely 1 μL of serum. More than 90% of the metabolic features exhibited RSDs below 30% in quality control samples, highlighting the high reproducibility of our method for clinical applications. Furthermore, hundreds of lung cancer patients and healthy controls can be clearly distinguished based on their SMPs by using appropriate machine learning models. Finally, two key metabolites associated with lung cancer were identified as potential biomarkers, which showed promising diagnostic capability with an AUC value of 0.824 in the validation set. Taken together, Fe3O4/MoS2 nanoparticles emerge as a promising nanomatrix with superior LDI efficiency and the developed LDI-MS platform proves to be a powerful tool for serum metabolic profiling, offering significant potential for lung cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘言发布了新的文献求助20
1秒前
李文浩发布了新的文献求助10
1秒前
完美世界应助李123采纳,获得10
2秒前
3秒前
Hello应助CHANGJIAGAO采纳,获得10
3秒前
4秒前
5秒前
小二郎应助ProfYang采纳,获得10
5秒前
5秒前
时迁关注了科研通微信公众号
6秒前
6秒前
田様应助李文浩采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
万信心发布了新的文献求助10
9秒前
深情安青应助NIUB采纳,获得10
10秒前
10秒前
11秒前
紫瑕完成签到,获得积分10
11秒前
桐桐应助干净冰露采纳,获得10
12秒前
棠梨子完成签到,获得积分10
12秒前
伞镜完成签到 ,获得积分10
12秒前
陵墨影发布了新的文献求助10
12秒前
13秒前
zyc发布了新的文献求助10
13秒前
清风发布了新的文献求助10
14秒前
14秒前
搜集达人应助Re采纳,获得10
14秒前
SciGPT应助傻傻的哈密瓜采纳,获得10
15秒前
刘言发布了新的文献求助10
16秒前
16秒前
无极微光应助奋斗的珍采纳,获得20
16秒前
萝卜干完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
CodeCraft应助大黑采纳,获得10
18秒前
黑月发布了新的文献求助30
18秒前
19秒前
zou发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533364
求助须知:如何正确求助?哪些是违规求助? 4621655
关于积分的说明 14579741
捐赠科研通 4561776
什么是DOI,文献DOI怎么找? 2499572
邀请新用户注册赠送积分活动 1479321
关于科研通互助平台的介绍 1450522