A Deep Learning Model for Identifying the Risk of Mesenteric Malperfusion in Acute Aortic Dissection Using Initial Diagnostic Data: Algorithm Development and Validation

主动脉夹层 算法 医学 计算机科学 人工智能 数据挖掘 机器学习 内科学 主动脉
作者
Zhechuan Jin,Jiale Dong,Chengxiang Li,Yi Jiang,Jian Yang,Lei Xu,Ping Li,Zhun Xie,Yulin Li,Dongjin Wang,Zhili Ji
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e72649-e72649
标识
DOI:10.2196/72649
摘要

Background Mesenteric malperfusion (MMP) is an uncommon but devastating complication of acute aortic dissection (AAD) that combines 2 life-threatening conditions—aortic dissection and acute mesenteric ischemia. The complex pathophysiology of MMP poses substantial diagnostic and management challenges. Currently, delayed diagnosis remains a critical contributor to poor outcomes because of the absence of reliable individualized risk assessment tools. Objective This study aims to develop and validate a deep learning–based model that integrates multimodal data to identify patients with AAD at high risk of MMP. Methods This multicenter retrospective study included 525 patients with AAD from 2 hospitals. The training and internal validation cohort consisted of 450 patients from Beijing Anzhen Hospital, whereas the external validation cohort comprised 75 patients from Nanjing Drum Tower Hospital. Three machine learning models were developed: the benchmark model using laboratory parameters, the multiorgan feature–based AAD complicating MMP (MAM) model based on computed tomography angiography images, and the integrated model combining both data modalities. Model performance was assessed using the area under the curve, accuracy, sensitivity, specificity, and Brier score. To improve interpretability, gradient-weighted class activation mapping was used to identify and visualize discriminative imaging features. Univariate and multivariate regression analyses were used to evaluate the prognostic significance of the risk score generated by the optimal model. Results In the external validation cohort, the integrated model demonstrated superior performance, with an area under the curve of 0.780 (95% CI 0.777-0.785), which was significantly greater than those of the benchmark model (0.586, 95% CI 0.574-0.586) and the MAM model (0.732, 95% CI 0.724-0.734). This highlights the benefits of multimodal integration over single-modality approaches. Additional classification metrics revealed that the integrated model had an accuracy of 0.760 (95% CI 0.758-0.764), a sensitivity of 0.667 (95% CI 0.659-0.675), a specificity of 0.783 (95% CI 0.781-0.788), and a Brier score of 0.143 (95% CI 0.143-0.145). Moreover, gradient-weighted class activation mapping visualizations of the MAM model revealed that during positive predictions, the model focused more on key anatomical areas, particularly the superior mesenteric artery origin and intestinal regions with characteristic gas or fluid accumulation. Univariate and multivariate analyses also revealed that the risk score derived from the integrated model was independently associated with inhospital mortality risk among patients with AAD undergoing endovascular or surgical treatment (odds ratio 1.030, 95% CI 1.004-1.056; P=.02). Conclusions Our findings demonstrate that compared with unimodal approaches, an integrated deep learning model incorporating both imaging and clinical data has greater diagnostic accuracy for MMP in patients with AAD. This model may serve as a valuable tool for early risk identification, facilitating timely therapeutic decision-making. Further prospective validation is warranted to confirm its clinical utility. Trial Registration Chinese Clinical Registry Center ChiCTR2400086050; http://www.chictr.org.cn/showproj.html?proj=226129
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的小萱关注了科研通微信公众号
刚刚
nandeyijia完成签到,获得积分10
1秒前
香蕉觅云应助加百莉采纳,获得10
2秒前
深情安青应助朴素尔蝶采纳,获得10
3秒前
shubo完成签到,获得积分10
3秒前
4秒前
7秒前
务实的菓完成签到 ,获得积分10
7秒前
左手树发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
12秒前
NexusExplorer应助wqs采纳,获得10
12秒前
12秒前
情怀应助MOMOMOMO采纳,获得30
14秒前
加百莉发布了新的文献求助10
14秒前
maodou发布了新的文献求助10
14秒前
然西而已发布了新的文献求助10
16秒前
16秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
17秒前
鱼骨完成签到 ,获得积分10
17秒前
Wa应助朱瑾琛采纳,获得10
17秒前
18秒前
哈啾完成签到 ,获得积分10
20秒前
璇彧发布了新的文献求助10
21秒前
maodou完成签到,获得积分10
22秒前
蒲公英发布了新的文献求助10
22秒前
23秒前
征服发布了新的文献求助10
24秒前
24秒前
victor完成签到,获得积分10
25秒前
26秒前
26秒前
MOMOMOMO发布了新的文献求助30
28秒前
jhz发布了新的文献求助10
30秒前
CipherSage应助嗯嗯采纳,获得10
31秒前
33秒前
hoshi完成签到 ,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452409
求助须知:如何正确求助?哪些是违规求助? 3919451
关于积分的说明 12165101
捐赠科研通 3569602
什么是DOI,文献DOI怎么找? 1960317
邀请新用户注册赠送积分活动 999633
科研通“疑难数据库(出版商)”最低求助积分说明 894577