From Transcripts to Cells: Dissecting Sensitivity, Signal Contamination, and Specificity in Xenium Spatial Transcriptomics

污染 转录组 灵敏度(控制系统) 信号(编程语言) 计算生物学 生物 计算机科学 环境科学 遗传学 基因表达 基因 工程类 生态学 电子工程 程序设计语言
作者
Mariia Bilous,Daria Buszta,Jonathan Bac,Senbai Kang,Yixing Dong,Stéphanie Tissot-Renaud,S. André,Marina Alexandre-Gaveta,Christel Voize,Solange Peters,Krisztián Homicskó,Raphaël Gottardo
标识
DOI:10.1101/2025.04.23.649965
摘要

Spatial transcriptomics has transformed our ability to map gene expression within intact tissues at cellular and subcellular resolution. Among current platforms, Xenium is widely adopted for its reliability, accessibility, and high data quality. Yet, the properties and limitations of Xenium-derived data remain poorly characterized. Here, we present one of the most comprehensive Xenium datasets to date, encompassing over 40 breast and lung tumor sections profiled using a diverse set of gene panels. Leveraging this resource, we systematically dissect technical noise, including transcript diffusion, alongside assay specificity, panel performance, and segmentation strategies. Our comparison of targeted panels with the newer 5K panel reveals that although the latter captures more transcripts overall, it suffers from reduced per-gene sensitivity and persistent diffusion, even with enhanced chemistry. We demonstrate that single-nucleus RNA-seq (snRNA-seq) markedly improves cell type annotation and enables more precise quantification of diffusion. Building on this, we introduce SPLIT (Spatial Purification of Layered Intracellular Transcripts), a novel method that integrates snRNA-seq with RCTD deconvolution to enhance signal purity. SPLIT effectively resolves mixed transcriptomic signals, improving background correction and cell-type resolution. Together, our findings provide a critical benchmark for Xenium performance and introduce a scalable strategy for signal refinement, advancing the accuracy and utility of spatial transcriptomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ss发布了新的文献求助10
1秒前
科研_小白完成签到 ,获得积分10
1秒前
4秒前
5秒前
njufeng完成签到,获得积分10
6秒前
6秒前
Diamond发布了新的文献求助10
9秒前
12秒前
Tender发布了新的文献求助10
12秒前
彭于晏应助22222采纳,获得10
15秒前
23xyke完成签到,获得积分10
16秒前
17秒前
感性的大楚完成签到 ,获得积分10
21秒前
等下完这场雨完成签到,获得积分10
21秒前
22秒前
情怀应助路过的热心群众采纳,获得10
29秒前
29秒前
周大聪明完成签到,获得积分10
29秒前
vv完成签到,获得积分10
33秒前
34秒前
maclogos发布了新的文献求助10
34秒前
34秒前
XiaoShu完成签到,获得积分10
35秒前
36秒前
Diamond完成签到,获得积分10
39秒前
vv发布了新的文献求助10
40秒前
xxx7749发布了新的文献求助10
41秒前
44秒前
46秒前
chenchenchen完成签到,获得积分20
46秒前
情怀应助叶绍辉采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
平淡井应助科研通管家采纳,获得10
49秒前
酷波er应助科研通管家采纳,获得10
49秒前
49秒前
共享精神应助科研通管家采纳,获得10
49秒前
49秒前
日出发布了新的文献求助10
50秒前
51秒前
hs完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315