A novel MRI PET image fusion using shearlet transform and pulse coded neural network

计算机科学 剪切波 人工智能 图像(数学) 脉搏(音乐) 人工神经网络 融合 图像融合 模式识别(心理学) 计算机视觉 电信 语言学 探测器 哲学
作者
Vella Satyanarayana,P. Mohanaiah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-88701-1
摘要

Image fusion involves combining details from two or more different imaging techniques, say MRI and PET images and provides a better image for diagnosis and treatment. Despite the fact standard spatial domain methods are being used successfully, including simple late fusion based on min/max fusion and far more complex content-aware pixel-wise mapping, key features are sometimes not well preserved. The domain transforms especially the WT-based fusion process, have brought significant improvements in literature hyper corrigibility, primarily because of its efficient computational performances along with its non-specificity of the image content domain. However, the directionality of the singularities is somewhat lost in the wavelet transform, due to which representation of truly distributed singularities is inherently limited. To overcome this limitation, the present work uses a non-subsampled shearlet transform (NSST) for medical image fusion, as it is effective in multi-directional and multiscale representation. The method proposed here firstly involves applying NSST to the source images to yield their lowpass and high-pass subbands. A pulse-coupled neural network (PCNN) is then used on these subbands to decide the best fusion rule to maintain most of the important structural and textural information. Last but not least, an inverse shearlet transform reconstructs the fused image using the processed sub-bands as inputs. Entropy, standard deviation, and the structural similarity index (SSIM) have been used quantitatively to assess the performance of the proposed fusion scheme. Experimental analysis using brain MRI/PET image databases shows that the proposed fusion method achieves better performance than the existing image fusion techniques and provides higher image quality and improved feature details.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李承月完成签到,获得积分10
刚刚
limerence发布了新的文献求助10
刚刚
tangxiaohui完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
彭于晏应助北冥鱼采纳,获得10
1秒前
2秒前
在水一方应助Clover采纳,获得10
2秒前
W昂发布了新的文献求助10
2秒前
明理的霸完成签到 ,获得积分10
2秒前
2秒前
Lyu完成签到,获得积分10
2秒前
科目三应助舒服的灰狼采纳,获得10
3秒前
orixero应助小王同学采纳,获得10
3秒前
wu发布了新的文献求助10
3秒前
zyyyyyy发布了新的文献求助10
3秒前
后夜完成签到,获得积分10
3秒前
Jasper应助豆腐干采纳,获得10
3秒前
4秒前
研友_VZG7GZ应助Dreamy采纳,获得10
4秒前
4秒前
adkins发布了新的文献求助10
4秒前
Xu发布了新的文献求助10
4秒前
研友_LwlRen完成签到 ,获得积分10
4秒前
英姑应助BuTutou采纳,获得10
4秒前
墨白完成签到,获得积分10
5秒前
FashionBoy应助潇洒台灯采纳,获得10
5秒前
tangxiaohui发布了新的文献求助30
5秒前
夏天的风发布了新的文献求助10
6秒前
未青易完成签到,获得积分10
6秒前
大模型应助哈哈哈哈采纳,获得10
7秒前
Hello应助mx采纳,获得10
7秒前
yo一天发布了新的文献求助10
7秒前
sunshine发布了新的文献求助10
7秒前
潘武瀚发布了新的文献求助10
7秒前
华仔应助Lyu采纳,获得10
7秒前
玄易完成签到,获得积分20
7秒前
爆米花应助ky采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506145
求助须知:如何正确求助?哪些是违规求助? 4601666
关于积分的说明 14478195
捐赠科研通 4535688
什么是DOI,文献DOI怎么找? 2485572
邀请新用户注册赠送积分活动 1468465
关于科研通互助平台的介绍 1440943