Cooperative Effects of Interface Symmetry, Redox Conditions and Low-Thickness to Improve Polarization in Ferroelectric Hf0.5Zr0.5O2 Films

材料科学 铁电性 极化(电化学) 氧化还原 凝聚态物理 结晶学 光电子学 电介质 物理化学 冶金 化学 物理
作者
Xueliang Lyu,Faizan Ali,Tingfeng Song,Ignasi Fina,F. Sánchez
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c03527
摘要

The ferroelectric phase of hafnia is metastable, and its stabilization is achieved by appropriate doping and generally only in ultrathin films where the contribution of surface energy is relevant. Other factors, such as interfaces and point defects such as oxygen vacancies, can affect the formation energy of competing polymorphs. Understanding the role of these factors is important to achieve further control over the stabilized phases and, thereby, improve ferroelectric polarization. To gain insight into the role of defects and stress at interfaces, we have compared a series of Hf0.5Zr0.5O2 epitaxial films of various thicknesses. The films were grown on (001) and (110) oriented SrTiO3 substrates to impose different symmetries at the interface and were deposited in a pure O2 or a mixed O2/Ar atmosphere to vary the oxidation conditions. We find that both factors are critical, with polarization maximized in films on (110)-oriented substrates and prepared under reducing conditions. Irrespective of the used substrate and atmosphere, polarization rapidly decays for thicknesses above 10 nm, indicating the relevance of the surface energy. Strain is thickness dependent, varying differently depending on the substrate orientation, but not on the deposition conditions investigated. Strain-thickness and polarization-thickness dependencies are not correlated, signaling that strain does not have a direct influence on the ferroelectricity of the films. Thickness, oxidation conditions, and epitaxial stress can contribute synergistically, and films with an optimal selection of these parameters have the ferroelectric polarization expected for pure orthorhombic phase films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwp发布了新的文献求助10
刚刚
脑洞疼应助Propitious采纳,获得10
刚刚
甜芋发布了新的文献求助10
1秒前
zp发布了新的文献求助10
2秒前
2秒前
动人的铃铛完成签到,获得积分10
2秒前
玉玊发布了新的文献求助10
3秒前
3秒前
伍教授完成签到,获得积分10
3秒前
3秒前
泡泡汽水发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助JWKim采纳,获得10
4秒前
5秒前
丘比特应助dandanmomo采纳,获得10
5秒前
蘑菇腿发布了新的文献求助10
6秒前
小胡发布了新的文献求助10
6秒前
Moody Qi完成签到,获得积分10
7秒前
冷傲半烟发布了新的文献求助30
7秒前
甜芋完成签到,获得积分10
9秒前
丰富绿蝶发布了新的文献求助10
9秒前
flysky120发布了新的文献求助30
9秒前
10秒前
11秒前
调皮紫文发布了新的文献求助10
12秒前
12秒前
JWKim发布了新的文献求助10
14秒前
刮风这天完成签到,获得积分10
15秒前
15秒前
15秒前
雾影觅光完成签到,获得积分10
16秒前
乐乐应助暮光之城采纳,获得10
17秒前
沧海青州发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
20秒前
hadron完成签到,获得积分10
21秒前
高兴松鼠完成签到,获得积分10
21秒前
彭宝淦完成签到,获得积分10
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4094890
求助须知:如何正确求助?哪些是违规求助? 3633208
关于积分的说明 11515916
捐赠科研通 3343843
什么是DOI,文献DOI怎么找? 1837818
邀请新用户注册赠送积分活动 905370
科研通“疑难数据库(出版商)”最低求助积分说明 823103