清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Detection of pine wood nematode infections in Chinese pine (Pinus tabuliformis) using hyperspectral drone images

高光谱成像 随机森林 侵染 模式识别(心理学) 卷积神经网络 杉木 人工智能 环境科学 数学 计算机科学 生物 园艺 植物
作者
Runsheng Yu,Yujie Liu,Bingtao Gao,Lili Ren,Youqing Luo
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.8938
摘要

Abstract BACKGROUND The pine wood nematode (PWN) has caused tremendous damage to pine forests in China. Accurately predicting the infestation stage of PWN is crucial for implementing appropriate management, such as chemically controlling early‐infested trees and felling and removing trees in the severe stages of infestation. Unmanned aerial vehicle (UAV)‐based hyperspectral technology can capture images with high spatial and spectral resolutions, facilitating more extensive coverage and enhanced detection efficiency. To date, few studies have used the correlation coefficient between full spectra and physiological traits to screen dual‐band vegetation indices (VIs). Moreover, there is a lack of comprehensive comparison between the screened VIs, feature wavelengths, and full spectra using various machine learning methods to predict the infection stage of PWN. RESULTS We evaluated the abilities of screened VIs, feature wavelengths selected by successive projections algorithm (SPA), and full spectra in estimating PWN infection levels. Random forest (RF), artificial neural network (ANN), support vector machine (SVM), and three convolutional neural networks (CNN) were applied. Screened VIs performed the best (OA%: 76.03–80.99; Kappa: 0.68–0.74), and RF approach obtained highest classification accuracies (OA%: 72.73–80.99; Kappa: 0.63–0.74). In discriminating between healthy trees and PWN‐infected trees at an early stage, RF using screened VIs outperformed other approaches (healthy trees: PA% = 76.92, UA% = 76.92; early‐infested trees: PA% = 66.67, UA% = 72.00), and normalized difference spectral index (NDSI) selected by chlorophyll content was the most sensitive feature. CONCLUSION We propose the integration of RF with the screened VIs as a recommended approach for the early detection of PWN infections in Chinese Pine, which give reference to the management of PWN infections. © 2025 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白小丸子完成签到,获得积分10
刚刚
jeronimo完成签到,获得积分10
2秒前
simon完成签到,获得积分10
3秒前
蓝意完成签到,获得积分0
5秒前
10秒前
xianyaoz完成签到 ,获得积分0
15秒前
helpmepaper应助火星上向珊采纳,获得10
17秒前
20秒前
bookgg完成签到 ,获得积分10
21秒前
22秒前
26秒前
40秒前
32429606完成签到 ,获得积分10
41秒前
quququ完成签到,获得积分10
43秒前
张1发布了新的文献求助10
45秒前
情怀应助quququ采纳,获得10
49秒前
50秒前
文献搬运工完成签到 ,获得积分10
51秒前
彭于晏应助科研通管家采纳,获得10
54秒前
不吃香菜完成签到,获得积分10
55秒前
犹豫的初丹完成签到,获得积分10
1分钟前
1分钟前
Xiaoming85完成签到,获得积分10
1分钟前
Grayball应助张1采纳,获得10
1分钟前
剑指东方是为谁应助张1采纳,获得10
1分钟前
剑指东方是为谁应助张1采纳,获得10
1分钟前
乒坛巨人完成签到 ,获得积分0
1分钟前
1分钟前
GG完成签到 ,获得积分10
1分钟前
scl完成签到 ,获得积分10
1分钟前
bono完成签到 ,获得积分10
1分钟前
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
tangchao完成签到,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
张1完成签到,获得积分20
1分钟前
tyro完成签到,获得积分10
1分钟前
husky完成签到,获得积分10
1分钟前
缥缈的闭月完成签到,获得积分10
2分钟前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Elephant Welfare in Global Tourism 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897822
求助须知:如何正确求助?哪些是违规求助? 3441852
关于积分的说明 10823339
捐赠科研通 3166838
什么是DOI,文献DOI怎么找? 1749641
邀请新用户注册赠送积分活动 845391
科研通“疑难数据库(出版商)”最低求助积分说明 788687