亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes

医学 射血分数 胸骨旁线 心脏病学 内科学 心力衰竭 回廊的 心肌梗塞 接收机工作特性 心房颤动
作者
Emily S. Lau,Paolo Di Achille,Kavya Kopparapu,Carl T. Andrews,Pulkit Singh,Christopher Reeder,Mostafa A. Al‐Alusi,Shaan Khurshid,Julian S. Haimovich,Patrick T. Ellinor,Michael H. Picard,Puneet Batra,Steven A. Lubitz,Jennifer E. Ho
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:82 (20): 1936-1948 被引量:5
标识
DOI:10.1016/j.jacc.2023.09.800
摘要

Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function. We developed a deep learning model to interpret echocardiograms and examined the association of deep learning–derived echocardiographic measures with incident outcomes. We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes. Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures. Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
present发布了新的文献求助10
7秒前
haralee完成签到 ,获得积分10
12秒前
我是老大应助present采纳,获得10
21秒前
27秒前
present完成签到,获得积分10
38秒前
55秒前
科研通AI2S应助cc采纳,获得10
1分钟前
彭于晏应助7086z采纳,获得10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
1分钟前
7086z发布了新的文献求助10
1分钟前
7086z完成签到,获得积分10
2分钟前
2分钟前
慕青应助好耶采纳,获得10
2分钟前
2分钟前
2分钟前
Claudia发布了新的文献求助10
2分钟前
3分钟前
qiandi完成签到 ,获得积分10
3分钟前
3分钟前
好耶发布了新的文献求助10
3分钟前
3分钟前
nina完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
橙子发布了新的文献求助10
4分钟前
4分钟前
腼腆的小熊猫完成签到 ,获得积分10
4分钟前
5分钟前
Havitya发布了新的文献求助10
5分钟前
斯文败类应助妩媚的幼丝采纳,获得10
5分钟前
5分钟前
妩媚的幼丝应助文件撤销了驳回
5分钟前
可爱的函函应助Gaopkid采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
Gaopkid完成签到,获得积分20
5分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808036
求助须知:如何正确求助?哪些是违规求助? 3352717
关于积分的说明 10360120
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810359
科研通“疑难数据库(出版商)”最低求助积分说明 766045