Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism

计算机科学 棱锥(几何) 编码(集合论) 目标检测 人工智能 特征(语言学) 树(集合论) 对象(语法) 卷积神经网络 模式识别(心理学) 程序设计语言 语言学 光学 物理 数学分析 哲学 数学 集合(抽象数据类型)
作者
Chengcheng Wang,Wei He,Nie Ying,Jianyuan Guo,Chuanjian Liu,Kai Han,Yunhe Wang
出处
期刊:Cornell University - arXiv 被引量:62
标识
DOI:10.48550/arxiv.2309.11331
摘要

In the past years, YOLO-series models have emerged as the leading approaches in the area of real-time object detection. Many studies pushed up the baseline to a higher level by modifying the architecture, augmenting data and designing new losses. However, we find previous models still suffer from information fusion problem, although Feature Pyramid Network (FPN) and Path Aggregation Network (PANet) have alleviated this. Therefore, this study provides an advanced Gatherand-Distribute mechanism (GD) mechanism, which is realized with convolution and self-attention operations. This new designed model named as Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales. Additionally, we implement MAE-style pretraining in the YOLO-series for the first time, allowing YOLOseries models could be to benefit from unsupervised pretraining. Gold-YOLO-N attains an outstanding 39.9% AP on the COCO val2017 datasets and 1030 FPS on a T4 GPU, which outperforms the previous SOTA model YOLOv6-3.0-N with similar FPS by +2.4%. The PyTorch code is available at https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO, and the MindSpore code is available at https://gitee.com/mindspore/models/tree/master/research/cv/Gold_YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill应助等待的花卷采纳,获得20
刚刚
王雪发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
dd发布了新的文献求助10
2秒前
2秒前
2秒前
qihuan152应助波波采纳,获得30
2秒前
3秒前
songge完成签到,获得积分10
4秒前
思源应助chelsea采纳,获得10
4秒前
ZhouYW应助欧班长采纳,获得10
4秒前
5秒前
发dasd应助cc采纳,获得10
5秒前
duke发布了新的文献求助200
5秒前
脑洞疼应助稳重的青旋采纳,获得10
6秒前
科研不懂12完成签到,获得积分20
6秒前
熊猫爱豆浆完成签到,获得积分10
6秒前
祥子发布了新的文献求助30
7秒前
好久不见发布了新的文献求助10
7秒前
GBY发布了新的文献求助10
7秒前
打打应助科研通管家采纳,获得30
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
科目三应助蝉鸣采纳,获得10
8秒前
xzy998应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
蓝幻雷发布了新的文献求助10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
Karhu89完成签到,获得积分0
9秒前
10秒前
10秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208