Non-linear modifications enhance prediction of pathological response to pre-operative PD-1 blockade in lung cancer: A longitudinal hybrid radiological model

无线电技术 人工智能 特征选择 计算机科学 特征(语言学) 肺癌 模式识别(心理学) 医学 肿瘤科 语言学 哲学
作者
Weiqiu Jin,Yu Tian,Wendi Xuzhang,Hongda Zhu,Ningyuan Zou,Leilei Shen,Changzi Dong,Qisheng Yang,Long Jiang,Jia Huang,Zheng Yuan,Xiaodan Ye,Qingquan Luo
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:198: 106992-106992 被引量:3
标识
DOI:10.1016/j.phrs.2023.106992
摘要

Major pathologic remission (MPR, residual tumor <10%) is a promising clinical endpoint for prognosis analysis in patients with lung cancer receiving pre-operative PD-1 blockade therapy. Most of the current biomarkers for predicting MPR such as PD-L1 and tumor mutation burden (TMB) need to be obtained invasively. They cannot overcome the spatiotemporal heterogeneity or provide dynamic monitoring solutions. Radiomics and artificial intelligence (AI) models provide a practical tool enabling non-invasive follow-up observation of tumor structural information through high-throughput data analysis. Currently, AI-based models mainly focus on the single baseline scan or pipeline, namely sole radiomics or deep learning (DL). This work merged the delta-radiomics based on the slope of classic radiomics indexes within a time interval and the features extracted by deep networks from the subtraction between the baseline and follow-up images. The subtracted images describing the tumor changes were based on the transformation generated by registration. Stepwise optimization of components was performed by repeating experiments among various combinations of DL networks, registration methods, feature selection algorithms, and classifiers. The optimized model could predict MPR with a cross-validation AUC of 0.91 and an external validation AUC of 0.85. A core set of 27 features (eight classic radiomics, 15 delta-radiomics, one classic DL features, and three delta-DL features) was identified. The changes in delta-radiomics indexes during the treatment were fitted with mathematic models. The fitting results revealed that over half of the features were of non-linear dynamics. Therefore, non-linear modifications were made on eight features by replacing the original features with non-linear fitting parameters, and the modified model achieved an improved power. The dynamic hybrid model serves as a novel and promising tool to predict the response of lesions to PD-1 blockade, which implies the importance of introducing the non-linear dynamic effects and DL approaches to the original delta-radiomics in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxh完成签到,获得积分10
刚刚
风车车发布了新的文献求助10
刚刚
热情完成签到,获得积分10
刚刚
zccjy完成签到,获得积分20
刚刚
槐x发布了新的文献求助10
刚刚
1秒前
huangxiru918完成签到,获得积分20
1秒前
1秒前
追求科研的小白完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
科研通AI5应助迷人雪碧采纳,获得10
3秒前
3秒前
3秒前
冰夏完成签到,获得积分10
4秒前
CY-a301E发布了新的文献求助10
4秒前
丘比特应助菜狗采纳,获得10
4秒前
4秒前
5秒前
子系郎完成签到,获得积分10
5秒前
超级训熊师完成签到,获得积分10
5秒前
6秒前
善学以致用应助caimeng采纳,获得30
6秒前
斯文无敌完成签到,获得积分10
6秒前
ym完成签到,获得积分10
6秒前
可靠吐司发布了新的文献求助10
7秒前
lwei完成签到,获得积分20
7秒前
冰夏发布了新的文献求助10
7秒前
biubiu发布了新的文献求助30
8秒前
miumiuka发布了新的文献求助10
8秒前
无脑的科研小白完成签到,获得积分20
8秒前
Lm发布了新的文献求助10
8秒前
9秒前
Amy发布了新的文献求助30
9秒前
9秒前
耍酷问兰完成签到,获得积分10
9秒前
tramp应助迷路的天蓉采纳,获得10
9秒前
10秒前
JamesPei应助guanzhong采纳,获得10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853