Detection of lung cancer metastasis from blood using L-MISC nanosensor: Targeting circulating metastatic cues for improved diagnosis

转移 肺癌 循环肿瘤细胞 医学 癌症 人口 肿瘤科 原发性肿瘤 病理 内科学 癌症研究 环境卫生
作者
Srilakshmi Premachandran,Ashok Kumar Dhinakaran,Sunit Das,Krishnan Venkatakrishnan,Bo Tan,Mansi Sharma
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:243: 115782-115782 被引量:11
标识
DOI:10.1016/j.bios.2023.115782
摘要

Metastatic lung cancers are considered one of the most clinically significant malignancies, comprising about 40% of deaths caused by cancers. Detection of lung cancer metastasis prior to symptomatic relapse is critical for timely diagnosis and clinical management. The onset of cancer metastasis is indicated by the manifestation of tumor-shed signatures from the primary tumor in peripheral circulation. A subset of this population, characterized as the metastasis-initiating stem cells, are capable of invasion, tumor initiation, and propagation of metastasis at distant sites. In this study, we have developed a SERS-functionalised L-MISC (Lung-Metastasis Initiating Stem Cells) nanosensor to accurately capture the trace levels of metastatic signatures directly from patient blood. We investigated the signatures of cancer stem cell enriched heterogenous population of primary and metastatic lung cancer cells to establish a metastatic profile unique to lung cancer. Multivariate statistical analyses revealed statistically significant differences in the molecular profiles of healthy, primary, and metastatic cell populations. The single-cell sensitivity of L-MISC nanosensor enabled a label-free detection of MISCs with high sensitivity and specificity. By employing a robust machine learning model, our diagnostic methodology can accurately detect metastatic lung cancer from not more than 5 μl of blood. A pilot validation of our study was carried out using clinical samples for the prediction of metastatic lung cancers resulting in 100% diagnostic sensitivity. The L-MISC nanosensor is a potential tool for highly rapid, non-invasive, and accurate diagnosis of lung cancer metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助受伤冰菱采纳,获得30
1秒前
汉堡包应助封芷采纳,获得10
1秒前
冰魂应助老高采纳,获得10
2秒前
天天快乐应助7123采纳,获得10
2秒前
小萌完成签到,获得积分10
3秒前
陈一昂发布了新的文献求助10
3秒前
英俊的铭应助zxtwins采纳,获得10
5秒前
无限寄翠完成签到,获得积分10
5秒前
陈陈陈介意完成签到 ,获得积分10
7秒前
cdercder应助wise111采纳,获得10
8秒前
guozizi发布了新的文献求助30
8秒前
9秒前
着急的觅荷完成签到,获得积分10
10秒前
10秒前
lalala123完成签到,获得积分20
10秒前
10秒前
SciGPT应助研友_8QyXr8采纳,获得10
11秒前
12秒前
12秒前
12秒前
陈隆完成签到,获得积分10
13秒前
lwei发布了新的文献求助10
14秒前
OxO完成签到,获得积分10
14秒前
顾矜应助祯果粒采纳,获得10
15秒前
lalala123发布了新的文献求助10
15秒前
secret完成签到,获得积分10
16秒前
隐形曼青应助LSR采纳,获得10
17秒前
17秒前
18秒前
7123发布了新的文献求助10
18秒前
受伤冰菱发布了新的文献求助30
20秒前
路寻完成签到,获得积分10
20秒前
Hey发布了新的文献求助20
21秒前
从容芮应助陈一昂采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
果子应助CY03采纳,获得10
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462