Detection of lung cancer metastasis from blood using L-MISC nanosensor: Targeting circulating metastatic cues for improved diagnosis

转移 肺癌 循环肿瘤细胞 医学 癌症 人口 肿瘤科 原发性肿瘤 病理 内科学 癌症研究 环境卫生
作者
Srilakshmi Premachandran,Ashok Kumar Dhinakaran,Sunit Das,Krishnan Venkatakrishnan,Bo Tan,Mansi Sharma
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:243: 115782-115782 被引量:11
标识
DOI:10.1016/j.bios.2023.115782
摘要

Metastatic lung cancers are considered one of the most clinically significant malignancies, comprising about 40% of deaths caused by cancers. Detection of lung cancer metastasis prior to symptomatic relapse is critical for timely diagnosis and clinical management. The onset of cancer metastasis is indicated by the manifestation of tumor-shed signatures from the primary tumor in peripheral circulation. A subset of this population, characterized as the metastasis-initiating stem cells, are capable of invasion, tumor initiation, and propagation of metastasis at distant sites. In this study, we have developed a SERS-functionalised L-MISC (Lung-Metastasis Initiating Stem Cells) nanosensor to accurately capture the trace levels of metastatic signatures directly from patient blood. We investigated the signatures of cancer stem cell enriched heterogenous population of primary and metastatic lung cancer cells to establish a metastatic profile unique to lung cancer. Multivariate statistical analyses revealed statistically significant differences in the molecular profiles of healthy, primary, and metastatic cell populations. The single-cell sensitivity of L-MISC nanosensor enabled a label-free detection of MISCs with high sensitivity and specificity. By employing a robust machine learning model, our diagnostic methodology can accurately detect metastatic lung cancer from not more than 5 μl of blood. A pilot validation of our study was carried out using clinical samples for the prediction of metastatic lung cancers resulting in 100% diagnostic sensitivity. The L-MISC nanosensor is a potential tool for highly rapid, non-invasive, and accurate diagnosis of lung cancer metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66完成签到,获得积分10
1秒前
所所应助我的小伙伴采纳,获得10
2秒前
李爱国应助健康的绮晴采纳,获得10
2秒前
王者归来完成签到,获得积分10
2秒前
3秒前
you完成签到,获得积分10
3秒前
4秒前
无花果应助优秀元枫采纳,获得10
5秒前
5秒前
盐咸小狗发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
SciGPT应助LiYong采纳,获得10
8秒前
9秒前
笑笑发布了新的文献求助10
10秒前
科研小子发布了新的文献求助10
10秒前
fan关闭了fan文献求助
10秒前
hhhh发布了新的文献求助10
11秒前
WXY完成签到,获得积分10
13秒前
13秒前
朱欣宇完成签到,获得积分10
14秒前
qq完成签到 ,获得积分10
14秒前
川荣李奈完成签到 ,获得积分10
14秒前
Jasper应助盐咸小狗采纳,获得10
15秒前
15秒前
Mjl完成签到,获得积分10
15秒前
16秒前
浮游应助笑笑采纳,获得10
17秒前
18秒前
科研通AI6应助循循采纳,获得10
19秒前
iuuu发布了新的文献求助10
20秒前
科研小子完成签到,获得积分10
21秒前
Dellamoffy完成签到,获得积分10
22秒前
齐阳春完成签到 ,获得积分10
22秒前
22秒前
吴珺慈完成签到 ,获得积分10
22秒前
hhhh完成签到,获得积分10
23秒前
树德发布了新的文献求助10
23秒前
jiaxvguo关注了科研通微信公众号
25秒前
25秒前
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446036
求助须知:如何正确求助?哪些是违规求助? 4555168
关于积分的说明 14250122
捐赠科研通 4477533
什么是DOI,文献DOI怎么找? 2453323
邀请新用户注册赠送积分活动 1444100
关于科研通互助平台的介绍 1420067