Human Pose Prediction Using Interpretable Graph Convolutional Network for Smart Home

计算机科学 图形 图论 人工智能 卷积神经网络 机器学习 模式识别(心理学) 理论计算机科学 数学 组合数学
作者
Boyu Yang,Liyazhou Hu,Yuyang Peng,Tingting Wang,Xiaofen Fang,Lina Wang,Kai Fang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 876-888 被引量:2
标识
DOI:10.1109/tce.2023.3303309
摘要

Recently, Human Pose Prediction (HPP) using image frames captured by cameras has been widely used in the smart home sector. Combining deep learning vision processing with HPP and using the Graph Convolutional Network (GCN) to extract temporal and spatial features of human actions has achieved satisfactory accuracy. However, there is still a lack of sufficient interpretability to translate theoretical findings into human-centric consumer applications. In this paper, a novel Interpretable GCN-based HPP (IGCN-HPP) model is proposed to address the above problem. Specifically, a multi-layer spatio-temporal convolution is first constructed to capture the depth features in human action data for prediction. Secondly, a GCN Explainer is proposed to assist in model training. When pre-processed graphics frames are fed into the GCN model, it generates various subgraphs. What's more, using Shapley values from game theory and specific graph rules to assess each subgraph's contribution to HPP, the neighborhood relationships between subgraphs and among nodes are estimated with the contribution optimization algorithm (COA). The reasonable interpretation of the predicted human pose is obtained by extracting and aggregating the subgraphs that contributed most to the proper prediction category. Qualitative and quantitative experimental results show that the proposed IGCN-HPP outperforms the baseline model in terms of predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡西应助科研通管家采纳,获得20
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
木头人应助科研通管家采纳,获得20
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
cdercder应助研友_LMBPXn采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得30
1秒前
细腻的秋天完成签到 ,获得积分10
1秒前
WAYNE应助科研通管家采纳,获得80
2秒前
Akim应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
负责吃饭完成签到,获得积分10
2秒前
谢惠茹完成签到,获得积分10
3秒前
nannannan完成签到,获得积分10
3秒前
3秒前
4秒前
小柏学长发布了新的文献求助30
4秒前
13656479046发布了新的文献求助10
4秒前
胡一刀发布了新的文献求助10
5秒前
多发paper啊完成签到,获得积分10
6秒前
善学以致用应助韭菜采纳,获得10
6秒前
领导范儿应助yyymmma采纳,获得10
6秒前
9秒前
小柏学长完成签到,获得积分20
9秒前
清爽达完成签到 ,获得积分10
9秒前
ddd发布了新的文献求助10
9秒前
Akim应助认真雅阳采纳,获得10
10秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864