多输入多输出
空间复用
计算机科学
多路复用
信道状态信息
瑞利衰落
衰退
天线分集
解码方法
稳健性(进化)
空间相关性
频道(广播)
区块代码
预编码
算法
电子工程
无线
电信
工程类
基因
生物化学
化学
作者
Chenghong Bian,Yulin Shao,Haotian Wu,Denız Gündüz
标识
DOI:10.1109/spawc53906.2023.10304536
摘要
We propose novel deep joint source-channel coding (DeepJSCC) algorithms for wireless image transmission over multi-input multi-output (MIMO) Rayleigh fading channels, when channel state information (CSI) is available only at the receiver. We consider two different schemes; one exploiting the spatial diversity and the other exploiting the spatial multiplexing gain of the MIMO channel, respectively. For the former, we utilize an orthogonal space-time block code (OSTBC) to achieve full diversity and increase the robustness against channel variations. In the latter, we directly map the input to the antennas, where the additional degree of freedom can be used to send more information about the source signal. Simulation results show that the diversity scheme outperforms the multiplexing scheme for lower signal-to-noise ratio (SNR) values and a smaller number of receive antennas at the AP. When the number of transmit antennas is greater than two, however, the full-diversity scheme becomes less beneficial. We also show that both the diversity and multiplexing schemes can achieve comparable performance with the state-of-the-art BPG algorithm delivered at the instantaneous capacity of the MIMO channel, which serves as an upper bound on the performance of separation-based practical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI