亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Objective Optimization Based Network Control Principles for Identifying Personalized Drug Targets With Cancer

计算机科学 鉴定(生物学) 节点(物理) 个性化医疗 生物信息学 工程类 植物 结构工程 生物
作者
Jing Liang,Zhuo Hu,Zongwei Li,Kangjia Qiao,Weifeng Guo
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tevc.2023.3303958
摘要

It is a big challenge to develop efficient models for identifying personalized drug targets (PDTs) from high-dimensional personalized genomic profile of individual patients. Recent structural network control principles have introduced a new approach to discover PDTs by selecting an optimal set of driver genes in personalized gene interaction network (PGIN). However, most of current methods only focus on controlling the system through a minimum driver-node set and ignore the existence of multiple candidate driver-node sets for therapeutic drug target identification in PGIN. Therefore, this paper proposed multi-objective optimization-based structural network control principles (MONCP) by considering minimum driver nodes and maximum prior-known drug-target information. To solve MONCP, a discrete multi-objective optimization problem is formulated with many constrained variables, and a novel evolutionary optimization model called LSCV-MCEA was developed by adapting a multi-tasking framework and a rankings-based fitness function method. With genomics data of patients with breast or lung cancer from The Cancer Genome Atlas database, the effectiveness of LSCV-MCEA was validated. The experimental results indicated that compared with other advanced methods, LSCV-MCEA can more effectively identify PDTs with the highest Area Under the Curve score for predicting clinically annotated combinatorial drugs. Meanwhile, LSCV-MCEA can more effectively solve MONCP than other evolutionary optimization methods in terms of algorithm convergence and diversity. Particularly, LSCV-MCEA can efficiently detect disease signals for individual patients with BRCA cancer. The study results show that multi-objective optimization can solve structural network control principles effectively and offer a new perspective for understanding tumor heterogeneity in cancer precision medicine. The source code of our LSCV-MCEA and supplementary files can be freely downloaded from https://github.com/WilfongGuo/MONCP, with all data in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助zzx采纳,获得10
18秒前
ARESCI发布了新的文献求助10
20秒前
25秒前
温暖的紫文完成签到,获得积分10
27秒前
29秒前
33秒前
coco完成签到 ,获得积分10
37秒前
zzx发布了新的文献求助10
39秒前
45秒前
oleskarabach完成签到,获得积分10
48秒前
wuujuan发布了新的文献求助10
50秒前
SOLOMON应助ARESCI采纳,获得10
1分钟前
SOLOMON应助ARESCI采纳,获得10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
虚幻豌豆发布了新的文献求助10
1分钟前
共享精神应助oleskarabach采纳,获得10
1分钟前
孤鸿影98完成签到 ,获得积分10
2分钟前
wtsow完成签到,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
寻道图强应助科研通管家采纳,获得10
3分钟前
我的小名叫雷锋完成签到 ,获得积分10
4分钟前
4分钟前
Ameng发布了新的文献求助10
4分钟前
4分钟前
隐形曼青应助不样钓鱼采纳,获得10
5分钟前
谷粱向秋发布了新的文献求助10
5分钟前
ZWTH完成签到,获得积分10
6分钟前
6分钟前
喜悦香萱完成签到 ,获得积分10
6分钟前
123发布了新的文献求助10
6分钟前
ding应助123采纳,获得10
6分钟前
gu完成签到 ,获得积分10
6分钟前
大个应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
小橘子发布了新的文献求助30
8分钟前
若眠完成签到 ,获得积分10
8分钟前
Sandy完成签到 ,获得积分10
9分钟前
顾矜应助鸡腿子采纳,获得10
9分钟前
田様应助虚幻豌豆采纳,获得10
9分钟前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Chen Jian - Zhou Enlai: A Life (2024) 500
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2406602
求助须知:如何正确求助?哪些是违规求助? 2104083
关于积分的说明 5310925
捐赠科研通 1831704
什么是DOI,文献DOI怎么找? 912717
版权声明 560655
科研通“疑难数据库(出版商)”最低求助积分说明 487965