Hydrogen-methane transport in clay nanopores: Insights from molecular dynamics simulations

纳米孔 甲烷 分子动力学 化学物理 氢分子 动力学(音乐) 化学 材料科学 纳米技术 计算化学 物理 有机化学 声学
作者
Shan Wang,Songqi Pan,Yongbing Tang,Ying Mu,Yuncong Gao,Ke Wang
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:69: 1450-1459 被引量:7
标识
DOI:10.1016/j.ijhydene.2024.05.113
摘要

Underground hydrogen storage (UHS) is recognized as one of the most promising ways to achieve large-scale long-term storage of hydrogen, and bridge the gap between demand and supply of the renewable energy sources. Recent studies show that depleted shale gas reservoirs might also be a favorable candidate for hydrogen storage because of its unique adsorption and sealing capacities. However, the interaction of hydrogen-cushion gas-water in shale is still unclear, and there is a lack of research revealing the transport mechanisms of their mixtures in shale nanopores. Here, we used the molecular dynamics simulations to investigate the hydrogen-methane transport through Na-montmorillonite clay (i.e. a common clay mineral in shale) in the presence of water. The effect of pore size, water content and driving pressure gradient on fluid behavior was discussed. The results show that: (i) The pores prefer to adsorb water molecules and form water films near the pore walls. If the water content is below 10%, it can be considered to increase the proportion of cushion gas to reduce the adsorption loss of hydrogen. (ii) When the water content increases from 10% to 50%, the thickness of water film in the pores increases by 2–3 times, and the self-diffusion coefficient of hydrogen decreases more than that of methane. (iii) The increased pressure gradient promotes the desorption of water molecules, and results in an increased amount of hydrogen accumulating near the pore walls. The results in the study provide deep insights into how hydrogen-methane mixtures transport through clay nanopores, which is important for enhancing experimental and modelling design aimed at improving hydrogen injection and production efficiency in shale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助虚幻弘文采纳,获得10
3秒前
3秒前
4秒前
LiZH发布了新的文献求助10
4秒前
4秒前
爆米花应助栗子采纳,获得10
5秒前
二二完成签到,获得积分10
5秒前
6秒前
cgliuhx发布了新的文献求助10
6秒前
Zoo应助乐只采纳,获得50
7秒前
7秒前
8秒前
一一高速下载文献没有问题完成签到,获得积分10
9秒前
派大星发布了新的文献求助10
10秒前
hx完成签到 ,获得积分10
10秒前
zenabia发布了新的文献求助10
10秒前
10秒前
lxy发布了新的文献求助10
10秒前
善学以致用应助远方采纳,获得10
11秒前
吴青完成签到,获得积分10
12秒前
afterly发布了新的文献求助10
12秒前
人类之光发布了新的文献求助10
12秒前
13秒前
13秒前
包妹完成签到,获得积分10
13秒前
JamesPei应助整齐醉冬采纳,获得10
14秒前
14秒前
山止川行发布了新的文献求助200
14秒前
大个应助沉静的靖巧采纳,获得10
14秒前
14秒前
内向问旋发布了新的文献求助10
15秒前
慕青应助1278day采纳,获得10
16秒前
西柚发布了新的文献求助10
16秒前
史中瑞发布了新的文献求助10
16秒前
cc完成签到 ,获得积分10
16秒前
16秒前
阿航发布了新的文献求助10
17秒前
masirthu发布了新的文献求助10
17秒前
是鸢完成签到,获得积分10
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4115426
求助须知:如何正确求助?哪些是违规求助? 3653817
关于积分的说明 11570442
捐赠科研通 3357541
什么是DOI,文献DOI怎么找? 1844358
邀请新用户注册赠送积分活动 910067
科研通“疑难数据库(出版商)”最低求助积分说明 826691