Integrating image-based LLMs on edge-devices for underwater robotics

人工智能 机器人学 水下 GSM演进的增强数据速率 计算机视觉 图像(数学) 计算机科学 机器人 地质学 海洋学
作者
Prabha Sundaravadivel,Preetha J. Roselyn,N. Vedachalam,Vincent I. Jeyaraj,Aparna Ramesh,Aaditya Khanal
标识
DOI:10.1117/12.3014446
摘要

Image-based Large Language Models (LLMs) are AI models that can understand the captured images and generate textual content based on the analysis of images or visual data. Incorporating the LLMs for assessing water quality, pressure, and environmental conditions can help analyze historical data and predict potential risks and threats in underwater environments. This can improve the intervention of autonomous underwater vehicles ( AUV) and remotely operated vehicles ( ROV) during emergencies where the visual data must be interpreted to make informed decisions. While LLMs are primarily associated with processing and generating text, they can be integrated with images through a process known as multimodal learning, where text and images are combined for tasks that involve both modalities. Implementing such frameworks is challenging when deployed in low-power microcontrollers primarily used in monitoring systems. This research proposes evaluating multimodal tokens to enable edge computing in bio-inspired robots to monitor the underwater environment. This can help break down large real-time videos into tokens of text-based instructions associated with the description of images. The mini-robots will transmit the collected "tokens" to the nearest AUV or ROV, where the image-based LLM will be deployed. We propose to evaluate this image-based LLM in our NVIDIA Jetson Nano-based AUV. In the proposed architecture, the mini-robots can move along the length of the water column to capture images of the underwater environment. Our proposed model is evaluated to generate texts for boat and fish images. This proposed framework with integrated image-based tokens can significantly reduce the response time and data traffic in underwater real-time monitoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aaron发布了新的文献求助10
1秒前
奋斗的蜗牛应助激流勇进采纳,获得10
1秒前
11发布了新的文献求助10
3秒前
张泽崇发布了新的文献求助10
6秒前
CodeCraft应助xixihaha采纳,获得10
7秒前
华仔应助Ab采纳,获得10
8秒前
9秒前
香蕉觅云应助XMUh采纳,获得20
12秒前
javaxixi完成签到,获得积分20
13秒前
13秒前
机灵雨发布了新的文献求助10
14秒前
17秒前
烟花应助Aaron采纳,获得10
18秒前
19秒前
19秒前
英俊的铭应助水灯霖采纳,获得10
22秒前
王婧萱萱萱完成签到 ,获得积分10
22秒前
孙策完成签到,获得积分10
24秒前
24秒前
丘比特应助英勇的寒蕾采纳,获得10
25秒前
25秒前
醒了没醒醒完成签到,获得积分10
26秒前
hhh完成签到,获得积分10
27秒前
29秒前
冰魂应助shangguanyilin采纳,获得50
29秒前
30秒前
30秒前
31秒前
31秒前
33秒前
学术白菜完成签到,获得积分10
33秒前
陈豆豆发布了新的文献求助10
34秒前
Aaron发布了新的文献求助10
35秒前
Ahiterin完成签到,获得积分10
35秒前
学术白菜发布了新的文献求助10
36秒前
nns发布了新的文献求助10
37秒前
水灯霖发布了新的文献求助10
37秒前
38秒前
38秒前
研友_LkKrmL发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842