A multimodal multi-objective differential evolution with series-parallel combination and dynamic neighbor strategy

系列(地层学) 计算机科学 差异进化 差速器(机械装置) 数学优化 算法 数学 生物 工程类 航空航天工程 古生物学
作者
Hu Peng,Wenwen Xia,Zhongtian Luo,Changshou Deng,Hui Wang,Zhijian Wu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:678: 120999-120999
标识
DOI:10.1016/j.ins.2024.120999
摘要

Multimodal multi-objective optimization problems (MMOPs), which aim to identify as many optimal solutions as possible and exhibit multiple equivalent Pareto optimal solution sets (PSs) that correspond to the same Pareto optimal front (PF), commonly arise in a wide range of optimization problems in the real world. However, some dominated solutions that exhibit greater diversity in the decision space may be substituted by non-dominated solutions with a higher level of decision space crowding. To tackle this issue, this paper proposes a multimodal multi-objective differential evolution with series-parallel combination and dynamic neighbor strategy (MMODE_SPDN), which can balance convergence, objective space diversity and decision space diversity. Specifically, two archives are initially updated serially followed by the overall update of the parallel structure, in which the serial-first approach can enhance population diversity and the parallel structure can greatly reduce the amount of calculation. In addition, a dynamic neighbor strategy which utilizes adaptive selection among neighbors to generate difference vectors in the decision space and objective space and then adopts the main and auxiliary parent method during the mutation process is proposed. Furthermore, the utilization of an auxiliary archive and the clustering-based special crowding distance (CSCD) method are employed to facilitate the updating of the archive, thereby enhancing diversity. MMODE_SPDN is compared with other multimodal multi-objective optimization evolutionary algorithms (MMOEAs) on numerous test problems and the experimental results demonstrate that MMODE_SPDN exhibits superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的梦寒完成签到,获得积分10
刚刚
华仔应助jinzhen采纳,获得10
刚刚
LLQ完成签到,获得积分20
4秒前
乐乐应助GenX采纳,获得10
4秒前
感动书文完成签到,获得积分10
5秒前
7秒前
酷酷映冬完成签到 ,获得积分10
9秒前
10秒前
医生小白完成签到 ,获得积分10
11秒前
11秒前
jinzhen发布了新的文献求助10
12秒前
炙热尔阳完成签到 ,获得积分10
12秒前
15秒前
xxx7749发布了新的文献求助10
17秒前
jason完成签到,获得积分10
18秒前
23秒前
Asura完成签到,获得积分10
36秒前
药学小团子完成签到,获得积分10
38秒前
42秒前
jify完成签到,获得积分10
43秒前
ORAzzz完成签到,获得积分10
46秒前
科目三应助凌代萱采纳,获得10
46秒前
拾光完成签到 ,获得积分10
47秒前
小猛人发布了新的文献求助10
48秒前
51秒前
从容问薇完成签到,获得积分10
53秒前
慕青应助小猛人采纳,获得10
56秒前
佳佳佳完成签到,获得积分10
56秒前
lf完成签到,获得积分10
59秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751