QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals

脑电图 特征提取 人工智能 计算机科学 精神分裂症(面向对象编程) 模式识别(心理学) 双相情感障碍 特征(语言学) 认知 特征选择 心理学 精神科 语言学 哲学
作者
Gülay Taşçı,Mehmet Veysel Gün,Tuğce Keleş,Burak Taşçı,Prabal Datta Barua,İrem Taşçı,Şengül Doğan,Mehmet Bayğın,Elizabeth E. Palmer,Türker Tuncer,Chui Ping Ooi,U. Rajendra Acharya
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:172: 113472-113472 被引量:2
标识
DOI:10.1016/j.chaos.2023.113472
摘要

Severe psychiatric disorders, including depressive disorders, schizophrenia spectrum disorders, and intellectual disability, have devastating impacts on vital life domains such as mental, psychosocial, and cognitive functioning and are correlated with an increased risk of mortality. Accurate symptom monitoring and early diagnosis are essential to optimize treatment and enhance patient outcomes. Electroencephalography (EEG) is a potential diagnostic and monitoring tool for mental health and cognitive disorders, as EEG signals are ideal inputs for machine learning models. In this paper, we propose a novel machine learning model for mental disorder detection based on EEG signals. electroencephalography (EEG) signals for the detection of three major mental health conditions, namely intellectual disability (ID), schizophrenia (SZ), and bipolar disorder (BD); and (ii) to introduce two novel conditional local binary pattern-based feature extractors for precise classification of these three classes. We collected a novel electroencephalography (EEG) signal dataset from 69 individuals, including a control group and participants diagnosed with bipolar disorder, schizophrenia, and intellectual disability. To extract informative features from the dataset, we developed two novel conditional feature extraction functions that improve upon traditional local binary pattern (LBP) functions by utilizing maximum and minimum distance vectors to generate patterns. We refer to these functions as quantum LBP (QLBP). Additionally, we employed wavelet packet decomposition to construct a multileveled feature extraction model. We evaluated several feature selection techniques, including neighborhood component analysis (NCA), Chi2, maximum relevance minimum redundancy (MRMR), and ReliefF, to select the most informative features. Finally, we employed iterative hard majority voting (IHMV) to obtain the final predicted results. Using our multichannel electroencephalography (EEG) signal dataset, we calculated channel-by-channel results and voted results for the classification of intellectual disability (ID), schizophrenia (SZ), and bipolar disorder (BD) classes. Our proposed model, employing the k-nearest neighbors (kNN) classifier with the leave-one subject out cross-validation (LOSO CV) strategy, achieved high accuracy rates of 97.47 %, 94.36 %, and 93.49 % for the ID, SZ, and BD classes, respectively. Employing the leave-one subject out cross-validation (LOSO CV) technique, our proposed model achieved classification accuracy rates of over 90 % for all cases, thereby providing strong evidence for the effectiveness of the proposed quantum local binary pattern (QLBP) feature extraction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助echo采纳,获得10
2秒前
李爱国应助王能能采纳,获得10
2秒前
5秒前
7秒前
莫x莫完成签到 ,获得积分10
8秒前
要笑cc发布了新的文献求助10
9秒前
CodeCraft应助AAAaa采纳,获得10
11秒前
充电宝应助彩色的新柔采纳,获得10
11秒前
Mmm完成签到,获得积分20
11秒前
薛冰雪发布了新的文献求助10
12秒前
12秒前
乐乐应助awerguio采纳,获得10
12秒前
12秒前
代桃完成签到,获得积分10
12秒前
14秒前
fjiang2003发布了新的文献求助10
14秒前
15秒前
stillqq发布了新的文献求助10
17秒前
聪明白羊完成签到,获得积分10
18秒前
LucyMartinez发布了新的文献求助20
19秒前
pl脆脆发布了新的文献求助10
20秒前
21秒前
薛冰雪完成签到,获得积分20
22秒前
22秒前
壮观的雪碧完成签到,获得积分10
22秒前
成就的外套完成签到,获得积分10
23秒前
lzc发布了新的文献求助10
25秒前
awerguio发布了新的文献求助10
26秒前
27秒前
王二萌完成签到 ,获得积分10
27秒前
香蕉觅云应助yanier采纳,获得10
29秒前
Mmm发布了新的文献求助10
32秒前
cici完成签到,获得积分20
32秒前
傻傻的哈密瓜完成签到,获得积分10
35秒前
35秒前
JamesPei应助虚幻的小海豚采纳,获得10
35秒前
cici发布了新的文献求助10
36秒前
善学以致用应助谨言采纳,获得10
38秒前
搜集达人应助乘风的法袍采纳,获得10
38秒前
38秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Theories of Human Development 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3917337
求助须知:如何正确求助?哪些是违规求助? 3462920
关于积分的说明 10926117
捐赠科研通 3190542
什么是DOI,文献DOI怎么找? 1763439
邀请新用户注册赠送积分活动 853582
科研通“疑难数据库(出版商)”最低求助积分说明 793955