QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals

脑电图 特征提取 人工智能 计算机科学 精神分裂症(面向对象编程) 模式识别(心理学) 双相情感障碍 特征(语言学) 认知 特征选择 心理学 精神科 语言学 哲学
作者
Gülay Taşçı,Mehmet Veysel Gün,Tuğce Keleş,Burak Taşçı,Prabal Datta Barua,İrem Taşçı,Şengül Doğan,Mehmet Bayğın,Elizabeth E. Palmer,Türker Tuncer,Chui Ping Ooi,U. Rajendra Acharya
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:172: 113472-113472 被引量:2
标识
DOI:10.1016/j.chaos.2023.113472
摘要

Severe psychiatric disorders, including depressive disorders, schizophrenia spectrum disorders, and intellectual disability, have devastating impacts on vital life domains such as mental, psychosocial, and cognitive functioning and are correlated with an increased risk of mortality. Accurate symptom monitoring and early diagnosis are essential to optimize treatment and enhance patient outcomes. Electroencephalography (EEG) is a potential diagnostic and monitoring tool for mental health and cognitive disorders, as EEG signals are ideal inputs for machine learning models. In this paper, we propose a novel machine learning model for mental disorder detection based on EEG signals. electroencephalography (EEG) signals for the detection of three major mental health conditions, namely intellectual disability (ID), schizophrenia (SZ), and bipolar disorder (BD); and (ii) to introduce two novel conditional local binary pattern-based feature extractors for precise classification of these three classes. We collected a novel electroencephalography (EEG) signal dataset from 69 individuals, including a control group and participants diagnosed with bipolar disorder, schizophrenia, and intellectual disability. To extract informative features from the dataset, we developed two novel conditional feature extraction functions that improve upon traditional local binary pattern (LBP) functions by utilizing maximum and minimum distance vectors to generate patterns. We refer to these functions as quantum LBP (QLBP). Additionally, we employed wavelet packet decomposition to construct a multileveled feature extraction model. We evaluated several feature selection techniques, including neighborhood component analysis (NCA), Chi2, maximum relevance minimum redundancy (MRMR), and ReliefF, to select the most informative features. Finally, we employed iterative hard majority voting (IHMV) to obtain the final predicted results. Using our multichannel electroencephalography (EEG) signal dataset, we calculated channel-by-channel results and voted results for the classification of intellectual disability (ID), schizophrenia (SZ), and bipolar disorder (BD) classes. Our proposed model, employing the k-nearest neighbors (kNN) classifier with the leave-one subject out cross-validation (LOSO CV) strategy, achieved high accuracy rates of 97.47 %, 94.36 %, and 93.49 % for the ID, SZ, and BD classes, respectively. Employing the leave-one subject out cross-validation (LOSO CV) technique, our proposed model achieved classification accuracy rates of over 90 % for all cases, thereby providing strong evidence for the effectiveness of the proposed quantum local binary pattern (QLBP) feature extraction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mona完成签到,获得积分10
刚刚
4秒前
凡高爱自由完成签到,获得积分10
7秒前
大模型应助怕孤单的思雁采纳,获得10
9秒前
鹿小新发布了新的文献求助10
12秒前
12秒前
hao完成签到,获得积分10
13秒前
70发布了新的文献求助10
13秒前
Xiaoxiao应助无奈的铅笔采纳,获得10
17秒前
18秒前
18秒前
dddd完成签到,获得积分10
18秒前
19秒前
传奇3应助lvsehx采纳,获得10
20秒前
光亮千易完成签到,获得积分10
20秒前
嘻嘻嘻完成签到,获得积分10
21秒前
22秒前
22秒前
蓝色发布了新的文献求助10
22秒前
汉堡包应助dddd采纳,获得10
22秒前
23秒前
25秒前
26秒前
神的女人完成签到,获得积分10
26秒前
lvsehx完成签到,获得积分10
28秒前
Yue发布了新的文献求助10
28秒前
29秒前
30秒前
布曲发布了新的文献求助10
31秒前
张宏宇发布了新的文献求助10
32秒前
Master完成签到,获得积分10
32秒前
蓝色完成签到,获得积分10
33秒前
相信相信的力量完成签到,获得积分10
33秒前
付莹子发布了新的文献求助10
34秒前
lyx2010完成签到,获得积分10
37秒前
伊力扎提完成签到,获得积分20
37秒前
老杨是混蛋完成签到,获得积分10
38秒前
激昂的逊完成签到 ,获得积分10
39秒前
41秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745