Anomaly Detection Method for Multivariate Time Series Data of Oil and Gas Stations Based on Digital Twin and MTAD-GAN

异常检测 计算机科学 数据挖掘 异常(物理) 多元统计 时间序列 人工智能 机器学习 凝聚态物理 物理
作者
Yuanfeng Lian,Yueyao Geng,Tian Tian
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (3): 1891-1891 被引量:25
标识
DOI:10.3390/app13031891
摘要

Due to the complexity of the oil and gas station system, the operational data, with various temporal dependencies and inter-metric dependencies, has the characteristics of diverse patterns, variable working conditions and imbalance, which brings great challenges to multivariate time series anomaly detection. Moreover, the time-series reconstruction information of data from digital twin space can be used to identify and interpret anomalies. Therefore, this paper proposes a digital twin-driven MTAD-GAN (Multivariate Time Series Data Anomaly Detection with GAN) oil and gas station anomaly detection method. Firstly, the operational framework consisting of digital twin model, virtual-real synchronization algorithm, anomaly detection strategy and realistic station is constructed, and an efficient virtual-real mapping is achieved by embedding a stochastic Petri net (SPN) to describe the station-operating logic of behavior. Secondly, based on the potential correlation and complementarity among time series variables, we present a MTAD-GAN anomaly detection method to reconstruct the error of multivariate time series by combining mechanism of knowledge graph attention and temporal Hawkes attention to judge the abnormal samples by a given threshold. The experimental results show that the digital twin-driven anomaly detection method can achieve accurate identification of anomalous data with complex patterns, and the performance of MTAD-GAN anomaly detection is improved by about 2.6% compared with other methods based on machine learning and deep learning, which proves the effectiveness of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
英俊的铭应助鹬鸱采纳,获得10
2秒前
Zhuxiaole发布了新的文献求助10
3秒前
在吃饭的时候吃饭完成签到,获得积分10
3秒前
领导范儿应助lu采纳,获得10
4秒前
4秒前
猪猪hero发布了新的文献求助10
4秒前
Calvin-funsom完成签到,获得积分10
4秒前
Akim应助Alice采纳,获得10
5秒前
诗和远方发布了新的文献求助10
6秒前
6秒前
顾矜应助吕文晴采纳,获得10
6秒前
虚心夜山发布了新的文献求助10
6秒前
kai完成签到,获得积分20
6秒前
6秒前
李健应助绝望了采纳,获得10
7秒前
8秒前
8秒前
lisier发布了新的文献求助10
8秒前
chunjun完成签到,获得积分10
8秒前
习红瑞发布了新的文献求助10
9秒前
wanci应助uf欧采纳,获得10
9秒前
英俊的铭应助久久采纳,获得10
9秒前
9秒前
陈宏宇完成签到,获得积分20
10秒前
BYN发布了新的文献求助10
10秒前
10秒前
10秒前
瓦罐完成签到 ,获得积分10
10秒前
11秒前
jeremy完成签到,获得积分10
11秒前
12秒前
我只属于你i完成签到,获得积分10
12秒前
隐形曼青应助koi采纳,获得10
13秒前
SYLH应助RRRCY采纳,获得20
14秒前
科研疯狗发布了新的文献求助30
15秒前
默默问晴发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831