化学
互动者
化学物理
扩散
静电学
静电
电荷(物理)
分子
离子强度
生物物理学
热扩散率
离子键合
扩散器(光学)
分析化学(期刊)
水溶液
离子
色谱法
物理化学
热力学
物理
有机化学
量子力学
生物
光源
进化生物学
光学
作者
Alexander A. Choi,Ke Xu
摘要
Recent microscopy and nuclear magnetic resonance (NMR) studies have noticed substantial suppression of intracellular diffusion for positively charged proteins, suggesting an overlooked role of electrostatic attraction in nonspecific protein interactions in a predominantly negatively charged intracellular environment. Utilizing single-molecule detection and statistics, here, we quantify in aqueous solutions how protein diffusion, in the limit of low diffuser concentration to avoid aggregate/coacervate formation, is modulated by differently charged interactor proteins over wide concentration ranges. We thus report substantially suppressed diffusion when oppositely charged interactors are added at parts per million levels, yet unvaried diffusivities when same-charge interactors are added beyond 1%. The electrostatic attraction-driven suppression of diffusion is sensitive to the protein net charge states, as probed by varying the solution pH and ionic strength or chemically modifying the proteins and is robust across different diffuser–interactor pairs. By converting the measured diffusivities to diffuser diameters, we further show that in the limit of excess interactors, a positively charged diffuser molecule effectively drags along just one monolayer of negatively charged interactors, where further interactions stop. We thus unveil ubiquitous, net charge-driven protein–protein interactions and shed new light on the mechanism of charge-based diffusion suppression in living cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI