Single-Molecule Diffusivity Quantification Unveils Ubiquitous Net Charge-Driven Protein–Protein Interaction

化学 互动者 化学物理 扩散 静电学 静电 电荷(物理) 分子 离子强度 生物物理学 热扩散率 离子键合 扩散器(光学) 分析化学(期刊) 水溶液 离子 色谱法 物理化学 热力学 物理 有机化学 量子力学 生物 光源 进化生物学 光学
作者
Alexander A. Choi,Ke Xu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (15): 10973-10978 被引量:4
标识
DOI:10.1021/jacs.4c02475
摘要

Recent microscopy and nuclear magnetic resonance (NMR) studies have noticed substantial suppression of intracellular diffusion for positively charged proteins, suggesting an overlooked role of electrostatic attraction in nonspecific protein interactions in a predominantly negatively charged intracellular environment. Utilizing single-molecule detection and statistics, here, we quantify in aqueous solutions how protein diffusion, in the limit of low diffuser concentration to avoid aggregate/coacervate formation, is modulated by differently charged interactor proteins over wide concentration ranges. We thus report substantially suppressed diffusion when oppositely charged interactors are added at parts per million levels, yet unvaried diffusivities when same-charge interactors are added beyond 1%. The electrostatic attraction-driven suppression of diffusion is sensitive to the protein net charge states, as probed by varying the solution pH and ionic strength or chemically modifying the proteins and is robust across different diffuser–interactor pairs. By converting the measured diffusivities to diffuser diameters, we further show that in the limit of excess interactors, a positively charged diffuser molecule effectively drags along just one monolayer of negatively charged interactors, where further interactions stop. We thus unveil ubiquitous, net charge-driven protein–protein interactions and shed new light on the mechanism of charge-based diffusion suppression in living cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助Cu采纳,获得10
刚刚
Bio完成签到,获得积分0
1秒前
turtle_medchem完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
2秒前
3秒前
勤恳马里奥完成签到,获得积分0
3秒前
梵莫完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
不信慕斯完成签到,获得积分10
5秒前
三人行完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
丘比特应助Danish采纳,获得10
7秒前
7秒前
8秒前
JZF完成签到,获得积分20
9秒前
大胆语儿完成签到,获得积分10
10秒前
秋刀鱼完成签到,获得积分10
11秒前
12秒前
oceanL完成签到,获得积分10
13秒前
香蕉半邪发布了新的文献求助10
13秒前
15秒前
悦007完成签到,获得积分10
15秒前
zym428完成签到,获得积分10
16秒前
happylion完成签到,获得积分10
17秒前
17秒前
hui完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
22秒前
澪澪澪应助SAY采纳,获得10
23秒前
HC完成签到,获得积分20
24秒前
善良的梦槐完成签到,获得积分10
24秒前
Hum6le完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
zzx发布了新的文献求助10
26秒前
刘海芃发布了新的文献求助10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224914
求助须知:如何正确求助?哪些是违规求助? 3758237
关于积分的说明 11813395
捐赠科研通 3419876
什么是DOI,文献DOI怎么找? 1876919
邀请新用户注册赠送积分活动 930347
科研通“疑难数据库(出版商)”最低求助积分说明 838581