Multilevel Joint Association Networks for Diverse Human Motion Prediction

联想(心理学) 接头(建筑物) 运动(物理) 计算机科学 人工智能 心理学 工程类 建筑工程 心理治疗师
作者
Linwei Chen,Wanshu Fan,Xu Gui,Yaqing Hou,Xin Yang,Qiang Zhang,Xiaopeng Wei,Dongsheng Zhou
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4165-4178
标识
DOI:10.1109/tetci.2024.3386840
摘要

Predicting accurate and diverse human motion presents a challenging task due to the complexity and uncertainty of future human motion. Existing works have explored sampling techniques and body modeling approaches to enhance diversity while maintaining the accuracy of human motion prediction. However, most of them often fall short in capturing the hierarchical features of the correlations between joints. To address these limitations, we propose in this paper the Multilevel Joint Association Network, a novel deep generative model designed to achieve both diverse and controllable motion prediction by adjusting the manner in which the human body is modeled. Our model incorporates two Graph Convolution Networks (GCNs) to enhance the extraction of features, resulting in more accurate future motion samples. Furthermore, we employ a multi-level Transformer generator that effectively capture the contact information between human joints and the personality characteristics of human joints, enabling the generated future motion samples with high diversity and low error. Extensive experimental results on two challenging datasets Human3.6 M and HumanEva-I, indicate that the proposed method achieves state-of-the-art performance in terms of both diversity and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
柴桑青木应助科研通管家采纳,获得20
3秒前
3秒前
4秒前
4秒前
万能图书馆应助燕子采纳,获得10
6秒前
zhanggq123完成签到,获得积分10
6秒前
Hz完成签到,获得积分10
6秒前
lizhiqian2024发布了新的文献求助10
7秒前
开心的兔子完成签到 ,获得积分20
8秒前
huanghuang完成签到 ,获得积分10
9秒前
kkk886发布了新的文献求助10
9秒前
斯文败类应助huluwa采纳,获得10
9秒前
zhanggq123发布了新的文献求助10
9秒前
10秒前
10秒前
XIXIw完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
九天完成签到 ,获得积分10
14秒前
hmgdktf发布了新的文献求助10
14秒前
15秒前
书剑飞侠完成签到,获得积分10
16秒前
17秒前
yyy发布了新的文献求助10
17秒前
LaTeXer应助非而者厚采纳,获得200
17秒前
称心嫣娆完成签到 ,获得积分10
17秒前
慕青应助NCNST-shi采纳,获得10
17秒前
邱邱发布了新的文献求助10
18秒前
所所应助开心的渊思采纳,获得10
18秒前
汉堡包应助欣慰的盼芙采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4455339
求助须知:如何正确求助?哪些是违规求助? 3921200
关于积分的说明 12169035
捐赠科研通 3571670
什么是DOI,文献DOI怎么找? 1961845
邀请新用户注册赠送积分活动 1001023
科研通“疑难数据库(出版商)”最低求助积分说明 895861