GAP: A novel Generative context-Aware Prompt-tuning method for relation extraction

计算机科学 生成语法 背景(考古学) 关系(数据库) 关系抽取 萃取(化学) 人工智能 生成模型 机器学习 数据挖掘 色谱法 古生物学 化学 生物
作者
Zhenbin Chen,Zhixin Li,Yufei Zeng,Canlong Zhang,Huifang Ma
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123478-123478 被引量:13
标识
DOI:10.1016/j.eswa.2024.123478
摘要

Prompt-tuning was proposed to bridge the gap between pretraining and downstream tasks, and it has achieved promising results in Relation Extraction (RE) tasks in recent years. Although the existing prompt-based RE methods have outperformed the methods based on the fine-tuning paradigm, these methods require domain experts to design prompt templates, making them hard to generalize. In this paper, we proposed a Generative context-Aware Prompt-tuning method (GAP) to address these limitations. Our method consists of three crucial modules: (1) a pretrained prompt generator module that extracts or generates the relation triggers from the context and embeds them into the prompt tokens, (2) an in-domain adaptive pretraining module that further trains the Pretrained Language Models (PLMs) to promote the adaptability of the model, and (3) a joint contrastive loss that prevents PLMs from generating results unrelated to the relation labels while optimizing our model more effectively. We observed that the context-enhanced prompt tokens generated by GAP can better guide PLMs to make accurate relationship predictions. And the in-domain pretraining can effectively inject domain knowledge to enhance the robustness of the model. We conduct experiments on four public RE datasets under the supervised and few-shot settings. The experimental results have demonstrated the superiority of GAP over existing benchmark methods and GAP shows remarkable improvements in few-shot settings, with average F1 score enhancements of 3.5%, 2.7%, and 3.4% on the TACRED, TACREV, and Re-TACRED datasets, respectively. Furthermore, GAP still achieved state-of-the-art (SOTA) performance in supervised settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不再挨训完成签到 ,获得积分10
3秒前
5秒前
秀丽高跟鞋完成签到,获得积分10
5秒前
7秒前
hellozijia完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
wewewew发布了新的文献求助10
11秒前
花花完成签到,获得积分10
11秒前
11秒前
陈宇发布了新的文献求助10
13秒前
酷波er应助wewewew采纳,获得30
15秒前
追风发布了新的文献求助10
16秒前
桐桐应助ycliang采纳,获得10
16秒前
16秒前
16秒前
cjq完成签到,获得积分0
17秒前
小眼儿完成签到 ,获得积分10
17秒前
lizhiqian2024发布了新的文献求助10
18秒前
19秒前
20秒前
王世卉完成签到,获得积分10
21秒前
段段砖完成签到 ,获得积分10
21秒前
22秒前
爆米花应助行运采纳,获得10
22秒前
22秒前
23秒前
小溜溜完成签到 ,获得积分10
24秒前
ZQF发布了新的文献求助30
24秒前
俏皮白云完成签到 ,获得积分10
24秒前
25秒前
25秒前
斯文败类应助欧欧欧导采纳,获得10
26秒前
负责铅笔发布了新的文献求助10
27秒前
27秒前
陈宇完成签到,获得积分10
27秒前
Mer_Mer完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050