DOVE: Doodled vessel enhancement for photoacoustic angiography super resolution

鸽子 深度学习 相似性(几何) 分辨率(逻辑) 生物医学中的光声成像 超分辨率 图像分辨率 人工智能 计算机科学 计算机视觉 图像(数学) 光学 物理 政治学 法学
作者
Yuanzheng Ma,Wangting Zhou,Rui Ma,Erqi Wang,Sihua Yang,Yansong Tang,Xiao–Ping Zhang,Xun Guan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:94: 103106-103106 被引量:5
标识
DOI:10.1016/j.media.2024.103106
摘要

Deep-learning-based super-resolution photoacoustic angiography (PAA) has emerged as a valuable tool for enhancing the resolution of blood vessel images and aiding in disease diagnosis. However, due to the scarcity of training samples, PAA super-resolution models do not generalize well, especially in the challenging in-vivo imaging of organs with deep tissue penetration. Furthermore, prolonged exposure to high laser intensity during the image acquisition process can lead to tissue damage and secondary infections. To address these challenges, we propose an approach doodled vessel enhancement (DOVE) that utilizes hand-drawn doodles to train a PAA super-resolution model. With a training dataset consisting of only 32 real PAA images, we construct a diffusion model that interprets hand-drawn doodles as low-resolution images. DOVE enables us to generate a large number of realistic PAA images, achieving a 49.375% fool rate, even among experts in photoacoustic imaging. Subsequently, we employ these generated images to train a self-similarity-based model for super-resolution. During cross-domain tests, our method, trained solely on generated images, achieves a structural similarity value of 0.8591, surpassing the scores of all other models trained with real high-resolution images. DOVE successfully overcomes the limitation of insufficient training samples and unlocks the clinic application potential of super-resolution-based biomedical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu发布了新的文献求助10
1秒前
小二郎应助2022H采纳,获得20
2秒前
3秒前
科研通AI5应助大泥鳅采纳,获得10
5秒前
hr关闭了hr文献求助
5秒前
小康找文献完成签到 ,获得积分10
6秒前
WUYONGSHUAI发布了新的文献求助10
9秒前
mingming完成签到,获得积分10
12秒前
灵寒完成签到 ,获得积分10
12秒前
fhz发布了新的文献求助10
12秒前
14秒前
舒服的踏歌完成签到,获得积分10
14秒前
Owen应助奶昔采纳,获得10
17秒前
高圆圆发布了新的文献求助10
17秒前
20秒前
22秒前
qianshu发布了新的文献求助10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
卡卡西应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
25秒前
熊小子爱学习完成签到,获得积分10
26秒前
童了个童发布了新的文献求助10
28秒前
缥缈夏彤完成签到,获得积分10
28秒前
Song完成签到,获得积分10
30秒前
年轻的飞风完成签到,获得积分10
33秒前
奋斗小松鼠完成签到,获得积分10
38秒前
39秒前
41秒前
团团发布了新的文献求助10
47秒前
猪猪hero应助PureKK采纳,获得10
49秒前
不过敏的橙子完成签到,获得积分10
50秒前
51秒前
shepherd完成签到,获得积分10
51秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451