An oscillatory particle swarm optimization feature selection algorithm for hybrid data based on mutual information entropy

相互信息 过度拟合 粒子群优化 特征选择 计算机科学 熵(时间箭头) 算法 多群优化 人工智能 混合算法(约束满足) 模式识别(心理学) 数据挖掘 人工神经网络 物理 约束满足 量子力学 概率逻辑 约束逻辑程序设计
作者
Jiali He,Liangdong Qu,Pei Wang,Zhaowen Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111261-111261 被引量:14
标识
DOI:10.1016/j.asoc.2024.111261
摘要

Hybrid data lead to overfitting in machine learning models, which may reduce the accuracy of classification. Feature selection can not only reduce the computational cost of processing hybrid data but also improve the accuracy of classification. The particle swarm optimization (PSO) algorithm has clear advantages in feature selection. This paper presents an oscillatory particle swarm optimization feature selection algorithm for hybrid data based on mutual information entropy. First, a new distance function on the object set of a hybrid information system (HIS) is built, which yields a tolerance relation on this object set. Then, mutual information entropy is presented to measure the uncertainty of the HIS. On this basis, the maximum-relevance and minimal-redundancy model (MRMR model) for the HIS is proposed. Based on the MRMR model, a feature selection algorithm (denoted as MRMR) for the HIS is naturally designed. As the integration of the MRMR model and PSO can effectively explore all possible feature subsets, an oscillatory particle swarm optimization algorithm based on the MRMR model (denoted as OPSO-MRMR) for the HIS is also designed. Moreover, the MRMR model is utilized to define a fitness function that evaluates the quality of particles. The particle position update process is modified by means of a two-order oscillatory equation. Finally, an experimental analysis is conducted to compare the two designed algorithms with five other algorithms. The statistical analysis of classification accuracy and F1 score shows that OPSO-MRMR improves precision by 5.8% and 10.7% compared to the other six algorithms, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
BY发布了新的文献求助10
1秒前
Whim应助扒开皮皮采纳,获得10
2秒前
zzzxxx发布了新的文献求助10
4秒前
淡定尔曼完成签到,获得积分10
5秒前
思源应助西楚霸王采纳,获得10
9秒前
zzzxxx完成签到,获得积分10
10秒前
多情的飞绿完成签到,获得积分10
12秒前
12秒前
李健的小迷弟应助TIGun采纳,获得10
13秒前
rye227应助BY采纳,获得10
13秒前
科研通AI5应助XXXD采纳,获得10
14秒前
16秒前
Viv完成签到 ,获得积分10
17秒前
17秒前
赘婿应助务实思烟采纳,获得10
18秒前
21秒前
zzzz完成签到,获得积分10
22秒前
23秒前
可恶完成签到,获得积分10
24秒前
27秒前
28秒前
西楚霸王给西楚霸王的求助进行了留言
30秒前
米朵发布了新的文献求助10
30秒前
搜集达人应助dsdjsicj采纳,获得10
33秒前
偷乐发布了新的文献求助30
35秒前
35秒前
37秒前
41秒前
妮扣胖饥发布了新的文献求助10
41秒前
44秒前
46秒前
47秒前
48秒前
冰魂应助妮扣胖饥采纳,获得10
48秒前
朴素的幻然完成签到,获得积分10
48秒前
maodou发布了新的文献求助30
49秒前
科研通AI5应助hulala采纳,获得10
50秒前
扒开皮皮发布了新的文献求助10
51秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385