SDTFusion: A split-head dense transformer based network for infrared and visible image fusion

融合 计算机科学 特征提取 人工智能 变压器 门控 情态动词 计算机视觉 模式识别(心理学) 工程类 电压 生物 电气工程 哲学 生理学 语言学 化学 高分子化学
作者
Shan Pang,Hongtao Huo,Xiaowen Liu,Bowen Zheng,Jing Li
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:138: 105209-105209 被引量:10
标识
DOI:10.1016/j.infrared.2024.105209
摘要

Most of the current deep learning based image fusion methods heavily rely on convolutional operations for feature extraction. Recently, some Transformer-based image fusion models have emerged. However, most of them design complex attention mechanisms and still rely heavily on convolutions for local features modeling. With this goal, this paper proposes a novel and simple split-head dense Transformer based infrared and visible image fusion network, termed as SDTFusion. It consists of three parts: the feature extraction module, the inter-gating fusion module and the reconstruction module. Particularly, the feature extraction module is a pure Transformer network where an interactive split-head attention mechanism is designed to model the uni-modal and cross-modal long-range dependencies and promote cross-modal information extraction. Dense connections between Transformer blocks facilitate the reusability of feature maps. In the fusion module, the inter-gating mechanism is formulated as the element-wise product of cross-modal information, which can well retain competitive infrared brightness and distinct visible details. Moreover, a learnable detail injection module built on cross-attention mechanism injects fine-grained bi-modal information into multiple layers of the reconstruction module. Extensive experiments performed on three benchmark datasets show that SDTFusion achieves surprising fusion performance compared with nine state-of-the-art methods. In addition, the dominant capabilities of semantic segmentation and object detection also reveal the great advantage of our framework in promoting downstream visual tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JYL发布了新的文献求助10
刚刚
聪慧的完成签到,获得积分10
1秒前
1秒前
可爱的函函应助黄JY采纳,获得10
1秒前
浮游应助Yuki采纳,获得10
2秒前
YHX9910完成签到,获得积分10
3秒前
吴彦祖发布了新的文献求助10
3秒前
LX完成签到 ,获得积分10
4秒前
Lucas应助梅梅采纳,获得10
4秒前
课题组刀刃完成签到 ,获得积分10
4秒前
4秒前
陈功发布了新的文献求助10
4秒前
彭于晏应助儒雅的书白采纳,获得10
5秒前
6秒前
席英哲发布了新的文献求助10
6秒前
shark00完成签到,获得积分10
7秒前
FashionBoy应助机智以筠采纳,获得10
7秒前
吴彦祖完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
slim完成签到 ,获得积分10
9秒前
过意发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
lllate发布了新的文献求助30
10秒前
10秒前
天天快乐应助牛帮帮采纳,获得10
10秒前
情怀应助uu采纳,获得10
10秒前
深情安青应助曹梦龙采纳,获得10
11秒前
Jasper应助崔崔采纳,获得10
11秒前
11秒前
大男完成签到,获得积分10
11秒前
丸子发布了新的文献求助10
12秒前
科研通AI6应助Dong213采纳,获得10
12秒前
12秒前
12秒前
ycy发布了新的文献求助10
13秒前
13秒前
lll关闭了lll文献求助
14秒前
Vanilla完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154