Contrastive self-supervised graph convolutional network for detecting the relationship among lncRNAs, miRNAs, and diseases

计算机科学 图形 生物学数据 机器学习 卷积神经网络 人工智能 利用 相似性(几何) 嵌入 理论计算机科学 数据挖掘 生物信息学 生物 计算机安全 图像(数学)
作者
Nan Sheng,Lan Huang,Yan Wang,Ling Gao,Huiyan Sun,Xuping Xie
标识
DOI:10.1109/bibm58861.2023.10385789
摘要

Inferring potential relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and diseases play a crucial role in investigation of disease aetiology and pathogenesis. Due to the high cost of laboratory experiments, there is a practical requirement to develop appropriate computational methods that promise to accelerate the experimental screening process for potential lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), and lncRNA-miRNA interactions (LMIs). However, most existing methods are applied to predict LDAs, MDAs, and LMIs in specific domains, neglecting the important benefits of integrating multiple sources data and limiting the ability of transferring models to other tasks. Furthermore, with the high sparsity of LDA, MDA, and LMI data, it is difficult for many computational models to exploit enough knowledge to learn the comprehensive patterns of node embedding. In this study, inspired by the recent success of graph contrastive learning, we develop a Contrastive Self-supervised Graph convolutional network to identify potential LDAs, MDAs, and LMIs (called CSGLMD). CSGLMD combines supervised learning and self-supervised learning to fully capture node features. Specifically, CSGLMD primarily leverages the rich association and similarity relationships among lncRNA, miRNA, and disease to construct a lncRNA-miRNA-disease heterogeneous graph (LMDHG) that contains three types of biological entities. It can effectively embed multi-source biological data and assist the model extension to other prediction tasks. In addition, we consider applying a label instantiation mechanism to make the LMDHG better adapt graph neural network structures and control the strength of similarity relationships between the same biological entities. Secondly, CSGLMD implements graph convolutional network (GCN) as encoder to extract node embedding features from the LMDHG, and utilizes a multi-relational modelling decoder to predict LDAs, MDAs, or LMIs. Finally, we designed a contrastive self-supervised learning task that guides the learning of node embeddings without relying on labels, and acts as a regularize in a multi-task learning paradigm to enhance the generalization ability of the model. Extensive results on two datasets (from the old and new versions of the database, respectively) show that CSGLMD significantly outperforms 12 state-of-the-art methods (5 LDA prediction and 7 MDA prediction) in predicting disease-associated lncRNAs and miRNAs. Case studies on old and new datasets can further demonstrate the capability of CSGLMD to discover disease-related new candidate lncRNAs and miRNAs. The source data and code for the proposed model are publicly available on https://github.com/sheng-n/CSGLMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
znlion发布了新的文献求助10
刚刚
小蘑菇应助轻松的贞采纳,获得10
1秒前
雨洋完成签到,获得积分10
1秒前
田様应助Mastertry采纳,获得10
3秒前
4秒前
小王完成签到,获得积分10
5秒前
6秒前
7秒前
蜗牛0356发布了新的文献求助20
9秒前
橘络完成签到 ,获得积分10
11秒前
11秒前
汉堡包应助1234采纳,获得10
12秒前
12秒前
莱贝特完成签到,获得积分10
13秒前
ZAY完成签到,获得积分10
13秒前
15秒前
17秒前
彩色的松思完成签到,获得积分10
17秒前
Emper发布了新的文献求助10
17秒前
19秒前
Jasper应助寒冷子轩采纳,获得10
19秒前
20秒前
轻松的贞发布了新的文献求助10
22秒前
卢敏明发布了新的文献求助10
22秒前
22秒前
Emper完成签到,获得积分10
22秒前
喵了个酥完成签到,获得积分10
24秒前
涛老三完成签到 ,获得积分10
25秒前
缥缈浩然发布了新的文献求助10
25秒前
26秒前
29秒前
缥缈浩然完成签到,获得积分10
30秒前
30秒前
30秒前
32秒前
冷傲山彤发布了新的文献求助20
32秒前
寒冷子轩发布了新的文献求助10
34秒前
胖虎发布了新的文献求助10
34秒前
852应助ff采纳,获得20
34秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669