Deep Learning-Based Reconstruction Improves the Image Quality of Low-Dose CT Colonography

人工智能 迭代重建 图像噪声 医学 图像质量 计算机科学 放射科 有效剂量(辐射) 核医学 图像(数学)
作者
Yanshan Chen,Zixuan Huang,Lijuan Feng,Wen‐Bin Zou,Decan Kong,Dongyun Zhu,Guochao Dai,Wei‐Dong Zhao,Yuanke Zhang,M Luo
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (8): 3191-3199 被引量:4
标识
DOI:10.1016/j.acra.2024.01.021
摘要

To evaluate the image quality of low-dose CT colonography (CTC) using deep learning-based reconstruction (DLR) compared to iterative reconstruction (IR).Adults included in the study were divided into four groups according to body mass index (BMI). Routine-dose (RD: 120 kVp) CTC images were reconstructed with IR (RD-IR); low-dose (LD: 100kVp) images were reconstructed with IR (LD-IR) and DLR (LD-DLR). The subjective image quality was rated on a 5-point scale by two radiologists independently. The parameters for objective image quality included noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The Friedman test was used to compare the image quality among RD-IR, LD-IR and LD-DLR. The KruskalWallis test was used to compare the results among different BMI groups.A total of 270 volunteers (mean age: 47.94 years ± 11.57; 115 men) were included. The effective dose of low-dose CTC was decreased by approximately 83.18% (5.18mSv ± 0.86 vs. 0.86mSv ± 0.05, P < 0.001). The subjective image quality score of LD-DLR was superior to that of LD-IR (3.61 ± 0.56 vs. 2.70 ± 0.51, P < 0.001) and on par with the RD- IR's (3.61 ± 0.56 vs. 3.74 ± 0.52, P = 0.486). LD-DLR exhibited the lowest noise, and the maximum SNR and CNR compared to RD-IR and LD-IR (all P < 0.001). No statistical difference was found in the noise of LD-DLR images between different BMI groups (all P > 0.05).Compared to IR, DLR provided low-dose CTC with superior image quality at an average radiation dose of 0.86mSv, which may be promising in future colorectal cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三发布了新的文献求助10
刚刚
英姑应助胡大嘴先生采纳,获得10
1秒前
笑点低苗条完成签到,获得积分10
2秒前
周博完成签到,获得积分10
2秒前
Tian应助大猫采纳,获得200
3秒前
3秒前
怕孤独的访云完成签到 ,获得积分10
4秒前
友好皮皮虾关注了科研通微信公众号
4秒前
咪咪关注了科研通微信公众号
4秒前
4秒前
i_jueloa完成签到,获得积分10
5秒前
今后应助称心寒松采纳,获得10
5秒前
无花果应助孝顺的青筠采纳,获得10
8秒前
8秒前
科研通AI5应助猪猪hero采纳,获得30
8秒前
8秒前
周博发布了新的文献求助10
9秒前
Elsa完成签到,获得积分10
9秒前
10秒前
Apple发布了新的文献求助10
11秒前
石榴汁的书完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
称心寒松发布了新的文献求助10
16秒前
Apple完成签到,获得积分10
17秒前
孤单的小白鼠完成签到,获得积分10
17秒前
会撒娇的安南完成签到,获得积分10
21秒前
共享精神应助xiaoleeyu采纳,获得10
22秒前
称心寒松完成签到,获得积分10
23秒前
Yyyyy完成签到,获得积分20
23秒前
完美世界应助酸萝卜采纳,获得10
24秒前
24秒前
隐形曼青应助hhh2018687采纳,获得10
25秒前
27秒前
28秒前
xiaoleeyu完成签到,获得积分10
28秒前
Jeffery完成签到,获得积分10
28秒前
ranran完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3525990
关于积分的说明 11229669
捐赠科研通 3263811
什么是DOI,文献DOI怎么找? 1801694
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767