Tracing topics and trends in drug‐resistant epilepsy research using a natural language processing–based topic modeling approach

癫痫 分类 神经科学 数据科学 计算机科学 推论 人工智能 医学 心理学
作者
Mert Karabacak,Pemla Jagtiani,Ankita Jain,Fedor Panov,Konstantinos Margetis
出处
期刊:Epilepsia [Wiley]
卷期号:65 (4): 861-872 被引量:9
标识
DOI:10.1111/epi.17890
摘要

Abstract Epilepsy is a common neurological disorder affecting over 70 million people worldwide. Although many patients achieve seizure control with anti‐epileptic drugs (AEDs), 30%–40% develop drug‐resistant epilepsy (DRE), where seizures persist despite adequate trials of AEDs. DRE is associated with reduced quality of life, increased mortality and morbidity, and greater socioeconomic challenges. The continued intractability of DRE has fueled exponential growth in research that aims to understand and treat this serious condition. However, synthesizing this vast and continuously expanding DRE literature to derive insights poses considerable difficulties for investigators and clinicians. Conventional review methods are often prolonged, hampering the timely application of findings. More‐efficient approaches to analyze the voluminous research are needed. In this study, we utilize a natural language processing (NLP)–based topic modeling approach to examine the DRE publication landscape, uncovering key topics and trends. Documents were retrieved from Scopus, preprocessed, and modeled using BERTopic. This technique employs transformer models like BERT (Bidirectional Encoder Representations from Transformers) for contextual understanding, thereby enabling accurate topic categorization. Analysis revealed 18 distinct topics spanning various DRE research areas. The 10 most common topics, including “AEDs,” “Neuromodulation Therapy,” and “Genomics,” were examined further. “Cannabidiol,” “Functional Brain Mapping,” and “Autoimmune Encephalitis” emerged as the hottest topics of the current decade, and were examined further. This NLP methodology provided valuable insights into the evolving DRE research landscape, revealing shifting priorities and declining interests. Moreover, we demonstrate an efficient approach to synthesizing and visualizing patterns within extensive literature that could be applied to other research fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助子鱼仔采纳,获得10
1秒前
2秒前
3秒前
蓝天应助DS采纳,获得10
3秒前
潇洒夜安完成签到,获得积分10
3秒前
Jasper应助程爽采纳,获得10
3秒前
ZBB发布了新的文献求助80
4秒前
4秒前
拼搏小丸子完成签到 ,获得积分10
5秒前
5秒前
Orange应助前进四19采纳,获得10
5秒前
6秒前
6秒前
中岛悠斗发布了新的文献求助10
8秒前
威武穆发布了新的文献求助10
8秒前
Kirito给耶耶耶y的求助进行了留言
9秒前
安之若素发布了新的文献求助10
9秒前
所所应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得30
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
勤劳怜寒应助科研通管家采纳,获得20
9秒前
pluto应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
null应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得30
9秒前
思源应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
10秒前
10秒前
核桃发布了新的文献求助10
11秒前
11秒前
11秒前
momo发布了新的文献求助10
11秒前
完美世界应助Rachel采纳,获得10
11秒前
12秒前
可爱的函函应助文静元霜采纳,获得10
13秒前
14秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291028
求助须知:如何正确求助?哪些是违规求助? 3818123
关于积分的说明 11957057
捐赠科研通 3461708
什么是DOI,文献DOI怎么找? 1898672
邀请新用户注册赠送积分活动 947254
科研通“疑难数据库(出版商)”最低求助积分说明 850032