Tracing topics and trends in drug‐resistant epilepsy research using a natural language processing–based topic modeling approach

癫痫 分类 神经科学 数据科学 计算机科学 推论 人工智能 医学 心理学
作者
Mert Karabacak,Pemla Jagtiani,Ankita Jain,Fedor Panov,Konstantinos Margetis
出处
期刊:Epilepsia [Wiley]
卷期号:65 (4): 861-872 被引量:13
标识
DOI:10.1111/epi.17890
摘要

Abstract Epilepsy is a common neurological disorder affecting over 70 million people worldwide. Although many patients achieve seizure control with anti‐epileptic drugs (AEDs), 30%–40% develop drug‐resistant epilepsy (DRE), where seizures persist despite adequate trials of AEDs. DRE is associated with reduced quality of life, increased mortality and morbidity, and greater socioeconomic challenges. The continued intractability of DRE has fueled exponential growth in research that aims to understand and treat this serious condition. However, synthesizing this vast and continuously expanding DRE literature to derive insights poses considerable difficulties for investigators and clinicians. Conventional review methods are often prolonged, hampering the timely application of findings. More‐efficient approaches to analyze the voluminous research are needed. In this study, we utilize a natural language processing (NLP)–based topic modeling approach to examine the DRE publication landscape, uncovering key topics and trends. Documents were retrieved from Scopus, preprocessed, and modeled using BERTopic. This technique employs transformer models like BERT (Bidirectional Encoder Representations from Transformers) for contextual understanding, thereby enabling accurate topic categorization. Analysis revealed 18 distinct topics spanning various DRE research areas. The 10 most common topics, including “AEDs,” “Neuromodulation Therapy,” and “Genomics,” were examined further. “Cannabidiol,” “Functional Brain Mapping,” and “Autoimmune Encephalitis” emerged as the hottest topics of the current decade, and were examined further. This NLP methodology provided valuable insights into the evolving DRE research landscape, revealing shifting priorities and declining interests. Moreover, we demonstrate an efficient approach to synthesizing and visualizing patterns within extensive literature that could be applied to other research fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vvei发布了新的文献求助10
1秒前
2秒前
Akim应助LucyMartinez采纳,获得10
2秒前
学术大亨完成签到,获得积分10
3秒前
QAQ发布了新的文献求助10
3秒前
小慧儿发布了新的文献求助10
5秒前
feng发布了新的文献求助10
6秒前
9秒前
11秒前
da_line完成签到,获得积分10
11秒前
辛未发布了新的文献求助10
14秒前
14秒前
dl发布了新的文献求助10
15秒前
17秒前
17秒前
JamesPei应助bold采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
酷波er应助djbj2022采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
陈尴尬完成签到,获得积分10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
yznfly应助科研通管家采纳,获得20
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
淡然安雁完成签到 ,获得积分10
19秒前
20秒前
李健应助天真的慕青采纳,获得10
21秒前
LucyMartinez发布了新的文献求助10
22秒前
一个果儿应助sunny采纳,获得30
25秒前
lblb发布了新的文献求助10
25秒前
陈尴尬发布了新的文献求助10
26秒前
美好斓发布了新的文献求助10
27秒前
FashionBoy应助敬业乐群采纳,获得10
31秒前
32秒前
33秒前
Georges-09发布了新的文献求助10
33秒前
34秒前
djbj2022发布了新的文献求助10
36秒前
slx发布了新的文献求助10
37秒前
37秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383