When Less Is More? Deep Reinforcement Learning-Based Optimization of Debt Collection

强化学习 钢筋 债务 人工智能 计算机科学 经济 机器学习 心理学 社会心理学 财务
作者
Cenying Yang,Tian Lu,Beibei Li,Xianghua Lu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4488673
摘要

Artificial intelligence (AI) presents opportunities to revolutionize financial services. In the current study, we focused on the microloan debt-collection context wherein collectors usually follow a strict sequence of “harsh” debt-collection actions, such as notifying borrowers' social contacts about their delinquencies. We applied a deep reinforcement learning (DRL) algorithm to examine whether such actions are necessary and derived optimal collection strategies on a fine-grained dataset. Installment-level and loan-level optimized results reduced the frequency of “harsh” actions by 49.05% and 60.19%, respectively. This suggests that microloan platforms should deploy collection actions more cautiously. More interestingly, we showed that installment-level and loan-level optimizations suggest somewhat different debt collection patterns across installments in a loan: installment-level optimization overall recommends avoiding the use of any “harsh” actions; by contrast, loan-level optimization recommends using very few actions in early stages but increasing the intensity of applications of (“harsher”) actions in late stages. Generally, loan-level optimization yields a higher recovery rate and greater economic gains than installment-level optimization or other commonly-used debt-collection strategies. This is probably owed to the fact that our DRL algorithm could capture the potential correlations across installments when optimizing at the loan level. Despite the overall superiority of loan-level optimization, our heterogeneity analysis further revealed that installment (loan)-level optimization should be used when borrowers with good socio-economic backgrounds fail to repay early (late) installments in a loan duration. Otherwise, the original intense strategy is more effective. Our findings offer concrete, actionable, and personalized guidance on debt-collection practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurelia完成签到,获得积分10
2秒前
3秒前
852应助JIyong采纳,获得10
4秒前
杨振完成签到,获得积分10
6秒前
zzzzzzzzzzzz完成签到,获得积分10
6秒前
sopha发布了新的文献求助10
6秒前
ccccc完成签到 ,获得积分10
7秒前
7秒前
amino发布了新的文献求助30
8秒前
科研通AI5应助yayaya采纳,获得10
9秒前
充电宝应助qq采纳,获得10
10秒前
10秒前
000发布了新的文献求助10
12秒前
14秒前
Raye发布了新的文献求助10
15秒前
高高发布了新的文献求助10
15秒前
浮游应助CHENISTRY采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得50
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
LaTeXer应助科研通管家采纳,获得50
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
李牧应助科研通管家采纳,获得20
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
cjcai应助科研通管家采纳,获得20
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得50
18秒前
cjcai应助科研通管家采纳,获得10
18秒前
李牧应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4762432
求助须知:如何正确求助?哪些是违规求助? 4101934
关于积分的说明 12692743
捐赠科研通 3818026
什么是DOI,文献DOI怎么找? 2107462
邀请新用户注册赠送积分活动 1132078
关于科研通互助平台的介绍 1011161