Automatic scoring of drug-induced sleep endoscopy for obstructive sleep apnea using deep learning

阻塞性睡眠呼吸暂停 医学 睡眠(系统调用) 呼吸暂停 药品 睡眠呼吸暂停 内窥镜检查 麻醉 内科学 计算机科学 药理学 操作系统
作者
Umaer Hanif,Eva Kirkegaard Kiær,Robson Capasso,Stanley Yung‐Chuan Liu,Emmanuel Mignot,Helge B. D. Sørensen,Poul Jennum
出处
期刊:Sleep Medicine [Elsevier BV]
卷期号:102: 19-29 被引量:9
标识
DOI:10.1016/j.sleep.2022.12.015
摘要

Background : Treatment of obstructive sleep apnea is crucial for long term health and reduced economic burden. For those considered for surgery, drug-induced sleep endoscopy (DISE) is a method to characterize location and pattern of sleep-related upper airway collapse. According to the VOTE classification system, four upper airway sites of collapse are characterized: velum (V),oropharynx (O), tongue (T), and epiglottis (E). The degree of obstruction per site is classified as 0(no obstruction), 1 (partial obstruction), or 2 (complete obstruction). Here we propose a deep learning approach for automatic scoring of VOTE obstruction degrees from DISE videos. Methods : We included 281 DISE videos with varying durations (6 seconds – 16 minutes) from two sleep clinics: Copenhagen University Hospital and Stanford University Hospital. Examinations were split into 5-second clips, each receiving annotations of 0, 1, 2, or X (site not visible) for each site (V, O, T, and E), which was used to train a deep learning model. Predicted VOTE obstruction degrees per examination was obtained by taking the highest predicted degree per site across 5-second clips, which was evaluated against VOTE degrees annotated by surgeons. Results : Mean F1 score of 70% was obtained across all DISE examinations (V: 85%, O: 72%, T:57%, E: 65%). For each site, sensitivity was highest for degree 2 and lowest for degree 0. No bias in performance was observed between videos from different clinicians/hospitals. Conclusions : This study demonstrates that automating scoring of DISE examinations show high validity and feasibility in degree of upper airway collapse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
冯嘉淇完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
Gying发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
小熊完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
嘻嘻印完成签到,获得积分10
4秒前
Allianlu完成签到,获得积分10
4秒前
Innogen完成签到,获得积分10
4秒前
4秒前
鲁大师发布了新的文献求助10
4秒前
sweetsbt完成签到,获得积分10
5秒前
lwzx发布了新的文献求助20
6秒前
6秒前
lwzx发布了新的文献求助10
6秒前
lwzx发布了新的文献求助10
6秒前
lwzx发布了新的文献求助30
7秒前
lwzx发布了新的文献求助10
7秒前
lwzx发布了新的文献求助10
7秒前
lwzx发布了新的文献求助10
7秒前
lwzx发布了新的文献求助10
7秒前
lwzx发布了新的文献求助10
7秒前
lwzx发布了新的文献求助10
7秒前
lwzx发布了新的文献求助10
7秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049130
求助须知:如何正确求助?哪些是违规求助? 3586997
关于积分的说明 11398270
捐赠科研通 3313607
什么是DOI,文献DOI怎么找? 1822891
邀请新用户注册赠送积分活动 894833
科研通“疑难数据库(出版商)”最低求助积分说明 816553