Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools

磁共振成像 分割 计算机科学 人工智能 脑癌 脑瘤 深度学习 神经影像学 脑病 机器学习 医学 医学物理学 放射科 疾病 癌症 病理 精神科 内科学
作者
Ramin Ranjbarzadeh,Annalina Caputo,Erfan Babaee Tırkolaee,Saeid Jafarzadeh Ghoushchi,Malika Bendechache
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106405-106405 被引量:170
标识
DOI:10.1016/j.compbiomed.2022.106405
摘要

Brain cancer is a destructive and life-threatening disease that imposes immense negative effects on patients’ lives. Therefore, the detection of brain tumors at an early stage improves the impact of treatments and increases the patients survival rates. However, detecting brain tumors in their initial stages is a demanding task and an unmet need. The present study presents a comprehensive review of the recent Artificial Intelligence (AI) methods of diagnosing brain tumors using MRI images. These AI techniques can be divided into Supervised, Unsupervised, and Deep Learning (DL) methods. Diagnosing and segmenting brain tumors usually begin with Magnetic Resonance Imaging (MRI) on the brain since MRI is a noninvasive imaging technique. Another existing challenge is that the growth of technology is faster than the rate of increase in the number of medical staff who can employ these technologies. It has resulted in an increased risk of diagnostic misinterpretation. Therefore, developing robust automated brain tumor detection techniques has been studied widely over the past years. The current review provides an analysis of the performance of modern methods in this area. Moreover, various image segmentation methods in addition to the recent efforts of researchers are summarized. Finally, the paper discusses open questions and suggests directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小亮哈哈完成签到,获得积分0
1秒前
星星之火完成签到,获得积分10
1秒前
iu发布了新的文献求助10
1秒前
JamesPei应助可靠月亮采纳,获得10
2秒前
Lyubb完成签到 ,获得积分10
4秒前
4秒前
神勇的星星完成签到,获得积分10
5秒前
5秒前
Jasmine发布了新的文献求助10
6秒前
沧海云帆发布了新的文献求助20
6秒前
6秒前
Hi_yoo发布了新的文献求助10
6秒前
李健应助hnxxangel采纳,获得10
6秒前
善学以致用应助TIWOSS采纳,获得10
7秒前
赘婿应助iu采纳,获得10
8秒前
8秒前
8秒前
粉红小海星完成签到,获得积分10
9秒前
10秒前
斯文败类应助Jasmine采纳,获得10
10秒前
12秒前
13秒前
14秒前
seekingalone完成签到,获得积分10
14秒前
15秒前
15秒前
新的旅程发布了新的文献求助10
16秒前
16秒前
16秒前
英俊水池发布了新的文献求助10
17秒前
iu发布了新的文献求助10
20秒前
Jasmine发布了新的文献求助10
21秒前
熊大完成签到,获得积分10
22秒前
菠萝发布了新的文献求助10
23秒前
ZhaoY完成签到,获得积分10
23秒前
24秒前
24秒前
CipherSage应助江南第八采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3944957
求助须知:如何正确求助?哪些是违规求助? 3490004
关于积分的说明 11054463
捐赠科研通 3220992
什么是DOI,文献DOI怎么找? 1780363
邀请新用户注册赠送积分活动 865335
科研通“疑难数据库(出版商)”最低求助积分说明 799837