Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications

计算机科学 人工智能 健康档案 机器学习 数据类型 生成语法 维数之咒 生成模型 数据科学 数据挖掘 医疗保健 经济 程序设计语言 经济增长
作者
Jin Li,Benjamin J. Cairns,Jingsong Li,Tingting Zhu
出处
期刊:npj digital medicine [Springer Nature]
卷期号:6 (1): 98-98 被引量:74
标识
DOI:10.1038/s41746-023-00834-7
摘要

Abstract The recent availability of electronic health records (EHRs) have provided enormous opportunities to develop artificial intelligence (AI) algorithms. However, patient privacy has become a major concern that limits data sharing across hospital settings and subsequently hinders the advances in AI. Synthetic data , which benefits from the development and proliferation of generative models, has served as a promising substitute for real patient EHR data. However, the current generative models are limited as they only generate single type of clinical data for a synthetic patient, i.e., either continuous-valued or discrete-valued. To mimic the nature of clinical decision-making which encompasses various data types/sources, in this study, we propose a generative adversarial network (GAN) entitled EHR-M-GAN that simultaneously synthesizes mixed-type timeseries EHR data. EHR-M-GAN is capable of capturing the multidimensional, heterogeneous, and correlated temporal dynamics in patient trajectories. We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients, and performed privacy risk evaluation of the proposed model. EHR-M-GAN has demonstrated its superiority over state-of-the-art benchmarks for synthesizing clinical timeseries with high fidelity, while addressing the limitations regarding data types and dimensionality in the current generative models. Notably, prediction models for outcomes of intensive care performed significantly better when training data was augmented with the addition of EHR-M-GAN-generated timeseries. EHR-M-GAN may have use in developing AI algorithms in resource-limited settings, lowering the barrier for data acquisition while preserving patient privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
刚刚
顺利语芙完成签到,获得积分10
刚刚
刚刚
华仔应助红箭烟雨采纳,获得10
刚刚
优美糖豆发布了新的文献求助10
2秒前
子车茗应助郑秀晶采纳,获得50
2秒前
红桃K完成签到,获得积分10
2秒前
2秒前
astral完成签到,获得积分10
2秒前
callmekar发布了新的文献求助10
3秒前
冷傲缘分发布了新的文献求助10
3秒前
4秒前
怡然雨雪完成签到,获得积分0
4秒前
太阳下山发布了新的文献求助10
4秒前
5秒前
直率豆芽发布了新的文献求助10
5秒前
5秒前
TCB完成签到,获得积分10
5秒前
5秒前
今后应助猪猪hero采纳,获得10
6秒前
lql发布了新的文献求助10
6秒前
modesty发布了新的文献求助10
6秒前
风清扬发布了新的文献求助10
7秒前
小二郎应助王111采纳,获得10
8秒前
树小夏发布了新的文献求助20
8秒前
8秒前
8秒前
9秒前
rslysywd发布了新的文献求助10
9秒前
ddw发布了新的文献求助10
9秒前
9秒前
zz关注了科研通微信公众号
10秒前
镓氧锌钇铀应助张嘉嘉采纳,获得20
10秒前
10秒前
打打应助X悦采纳,获得10
11秒前
11秒前
12秒前
Ava应助陈磊采纳,获得10
12秒前
chenhy发布了新的文献求助20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514198
求助须知:如何正确求助?哪些是违规求助? 4608120
关于积分的说明 14508732
捐赠科研通 4543952
什么是DOI,文献DOI怎么找? 2489834
邀请新用户注册赠送积分活动 1471765
关于科研通互助平台的介绍 1443710