清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A pretrained transformer model for decoding individual glucose dynamics from continuous glucose monitoring data

概化理论 人工智能 机器学习 深度学习 计算机科学 低血糖 人工神经网络 医学 内分泌学 统计 糖尿病 数学
作者
Yurun Lu,Dan Liu,Zhongming Liang,Rui Liu,Pei Chen,Yitong Liu,Jiachen Li,Zhanying Feng,Lei M. Li,Bin Sheng,Weiping Jia,Luonan Chen,Huating Li,Yong Wang
出处
期刊:National Science Review [Oxford University Press]
被引量:2
标识
DOI:10.1093/nsr/nwaf039
摘要

Abstract Continuous glucose monitoring (CGM) technology has grown rapidly to track real-time blood glucose levels and trends with improved sensor accuracy. The ease of use and wide availability of CGM would facilitate safe and effective decision making for diabetes management. Here, we developed an attention-based deep learning model, CGMformer, pretrained on a well-controlled and diverse corpus of CGM data to represent individual's intrinsic metabolic state and enable clinical applications. During pretraining, CGMformer encodes glucose dynamics including glucose level, fluctuation, hyperglycemia, and hypoglycemia into latent space with self-supervised learning. It shows generalizability in imputing glucose value across five external datasets with different populations and metabolic states (MAE=3.7 mg/dl). We then finetuned CGMformer towards a diverse panel of downstream tasks in the screening of diabetes and complications using task-specific data, which demonstrated a consistently boosted predictive accuracy over direct fine-tuning on a single task (AUROC=0.914 for T2D screening and 0.741 for complication screening). By learning an intrinsic representation of individual's glucose dynamics, CGMformer classify non-diabetic individuals into six clusters with elevated T2D risks, and identify a specific cluster with lean body-shape but high risk of glucose metabolism disorders, which is overlooked by traditional glucose measurements. Furthermore, CGMformer achieves high accuracy in predicting individual's postprandial glucose response with dietary modelling (Pearson correlation coefficient=0.763) and helps personalized dietary recommendation. Overall, CGMformer pretrains a transformer neural network architecture to learn an intrinsic representation by borrowing information from a large amount of daily glucose profiles, demonstrates predictive capabilities fine-tuning towards a broad range of downstream applications, and holds promise in early warning of T2D and recommendation for lifestyle modification in diabetes management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫熊发布了新的文献求助10
刚刚
8秒前
紫熊发布了新的文献求助20
26秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
紫熊发布了新的文献求助10
56秒前
xiaosui完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
义气尔琴完成签到,获得积分10
1分钟前
紫熊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
森森发布了新的文献求助10
1分钟前
zgx完成签到 ,获得积分10
1分钟前
紫熊发布了新的文献求助20
1分钟前
1分钟前
在水一方应助森森采纳,获得10
1分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
muriel完成签到,获得积分10
2分钟前
cadcae完成签到,获得积分10
2分钟前
yi完成签到,获得积分10
2分钟前
曾经的背包完成签到 ,获得积分10
3分钟前
k001boyxw完成签到,获得积分10
4分钟前
一见憘完成签到 ,获得积分10
4分钟前
王磊完成签到 ,获得积分10
4分钟前
乐观海云完成签到 ,获得积分10
4分钟前
jjj完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
BLUK发布了新的文献求助10
4分钟前
森森发布了新的文献求助10
4分钟前
完美世界应助zyq111111采纳,获得10
5分钟前
5分钟前
zyq111111发布了新的文献求助10
5分钟前
森森完成签到,获得积分10
5分钟前
taku完成签到 ,获得积分10
6分钟前
zyq111111完成签到,获得积分10
6分钟前
Gary完成签到 ,获得积分10
6分钟前
高分求助中
中华人民共和国出版史料 4 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845559
求助须知:如何正确求助?哪些是违规求助? 3387836
关于积分的说明 10550653
捐赠科研通 3108452
什么是DOI,文献DOI怎么找? 1712813
邀请新用户注册赠送积分活动 824508
科研通“疑难数据库(出版商)”最低求助积分说明 774877