Comparative Analysis of Binary Similarity Measures for Compound Identification in Mass Spectrometry-Based Metabolomics

雅卡索引 相似性(几何) 余弦相似度 质谱 相似性度量 模式识别(心理学) 质谱法 二进制数 度量(数据仓库) 鉴定(生物学) 掷骰子 人工智能 化学 数学 统计 生物系统 数据挖掘 计算机科学 色谱法 生物 植物 算术 图像(数学)
作者
Seongho Kim,Ikuko Kato,Xiang Zhang
出处
期刊:Metabolites [Multidisciplinary Digital Publishing Institute]
卷期号:12 (8): 694-694 被引量:6
标识
DOI:10.3390/metabo12080694
摘要

Compound identification is a critical step in untargeted metabolomics. Its most important procedure is to calculate the similarity between experimental mass spectra and either predicted mass spectra or mass spectra in a mass spectral library. Unlike the continuous similarity measures, there is no study to assess the performance of binary similarity measures in compound identification, even though the well-known Jaccard similarity measure has been widely used without proper evaluation. The objective of this study is thus to evaluate the performance of binary similarity measures for compound identification in untargeted metabolomics. Fifteen binary similarity measures, including the well-known Jaccard, Dice, Sokal-Sneath, Cosine, and Simpson measures, were selected to assess their performance in compound identification. using both electron ionization (EI) and electrospray ionization (ESI) mass spectra. Our theoretical evaluations show that the accuracy of the compound identification was exactly the same between the Jaccard, Dice, 3W-Jaccard, Sokal-Sneath, and Kulczynski measures, between the Cosine and Hellinger measures, and between the McConnaughey and Driver-Kroeber measures, which were practically confirmed using mass spectra libraries. From the mass spectrum-based evaluation, we observed that the best performing similarity measures were the McConnaughey and Driver-Kroeber measures for EI mass spectra and the Cosine and Hellinger measures for ESI mass spectra. The most robust similarity measure was the Fager-McGowan measure, the second-best performing similarity measure in both EI and ESI mass spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
uietoo发布了新的文献求助10
2秒前
十两完成签到,获得积分10
2秒前
3秒前
高淑桐完成签到,获得积分10
4秒前
甜美梦槐发布了新的文献求助10
4秒前
七熵完成签到 ,获得积分10
5秒前
小黄人完成签到 ,获得积分10
6秒前
归安发布了新的文献求助10
6秒前
liuliu完成签到 ,获得积分10
7秒前
zhuangxiong完成签到,获得积分10
8秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
加菲丰丰应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
慕青应助uietoo采纳,获得10
11秒前
Migrol完成签到,获得积分10
12秒前
zsk1122完成签到,获得积分10
13秒前
甜美梦槐完成签到,获得积分10
14秒前
神勇的天菱完成签到,获得积分10
15秒前
闪闪凝冬完成签到,获得积分10
15秒前
科研通AI5应助贴贴超人采纳,获得10
17秒前
17秒前
17秒前
所所应助岁月轮回采纳,获得10
19秒前
啦啦啦123完成签到,获得积分10
19秒前
20秒前
李健的小迷弟应助爱小妍采纳,获得10
22秒前
23秒前
KL发布了新的文献求助10
23秒前
淡淡夕阳发布了新的文献求助10
24秒前
24秒前
李爱国应助初识采纳,获得10
25秒前
今后应助kkk采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563