Comparative Analysis of Binary Similarity Measures for Compound Identification in Mass Spectrometry-Based Metabolomics

雅卡索引 相似性(几何) 余弦相似度 质谱 相似性度量 模式识别(心理学) 质谱法 二进制数 度量(数据仓库) 鉴定(生物学) 掷骰子 人工智能 化学 数学 统计 生物系统 数据挖掘 计算机科学 色谱法 生物 植物 算术 图像(数学)
作者
Seongho Kim,Ikuko Kato,Xiang Zhang
出处
期刊:Metabolites [Multidisciplinary Digital Publishing Institute]
卷期号:12 (8): 694-694 被引量:6
标识
DOI:10.3390/metabo12080694
摘要

Compound identification is a critical step in untargeted metabolomics. Its most important procedure is to calculate the similarity between experimental mass spectra and either predicted mass spectra or mass spectra in a mass spectral library. Unlike the continuous similarity measures, there is no study to assess the performance of binary similarity measures in compound identification, even though the well-known Jaccard similarity measure has been widely used without proper evaluation. The objective of this study is thus to evaluate the performance of binary similarity measures for compound identification in untargeted metabolomics. Fifteen binary similarity measures, including the well-known Jaccard, Dice, Sokal-Sneath, Cosine, and Simpson measures, were selected to assess their performance in compound identification. using both electron ionization (EI) and electrospray ionization (ESI) mass spectra. Our theoretical evaluations show that the accuracy of the compound identification was exactly the same between the Jaccard, Dice, 3W-Jaccard, Sokal-Sneath, and Kulczynski measures, between the Cosine and Hellinger measures, and between the McConnaughey and Driver-Kroeber measures, which were practically confirmed using mass spectra libraries. From the mass spectrum-based evaluation, we observed that the best performing similarity measures were the McConnaughey and Driver-Kroeber measures for EI mass spectra and the Cosine and Hellinger measures for ESI mass spectra. The most robust similarity measure was the Fager-McGowan measure, the second-best performing similarity measure in both EI and ESI mass spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywb驳回了SciGPT应助
1秒前
大个应助Lo采纳,获得10
1秒前
1秒前
2秒前
源源发布了新的文献求助10
2秒前
red发布了新的文献求助10
2秒前
2秒前
yyyyyyyyyy完成签到,获得积分10
3秒前
zhou发布了新的文献求助10
3秒前
3秒前
Carl发布了新的文献求助20
4秒前
6秒前
盐好甜发布了新的文献求助10
6秒前
yyyyyyyyyy发布了新的文献求助20
7秒前
7秒前
MHK发布了新的文献求助30
7秒前
传统的雨文完成签到,获得积分10
7秒前
斯文败类应助哈哈哈采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
屈绮兰应助科研通管家采纳,获得30
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
徐国发应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
徐国发应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
专注白昼应助科研通管家采纳,获得20
9秒前
OIIII应助科研通管家采纳,获得20
9秒前
10秒前
11秒前
优美的海秋完成签到,获得积分10
12秒前
勇闯科研圈完成签到,获得积分10
13秒前
汉堡包应助li采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
basics of anesthesia, 7th edition 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915811
求助须知:如何正确求助?哪些是违规求助? 3461425
关于积分的说明 10916731
捐赠科研通 3188241
什么是DOI,文献DOI怎么找? 1762507
邀请新用户注册赠送积分活动 852893
科研通“疑难数据库(出版商)”最低求助积分说明 793603