壳聚糖
细胞毒性
共聚物
核化学
化学
卵清蛋白
琼脂糖凝胶电泳
纳米颗粒
药物输送
嫁接
高分子化学
分子生物学
体外
材料科学
抗原
生物化学
纳米技术
免疫学
有机化学
聚合物
医学
生物
基因
作者
Kai Zhang,Qian Sun,Peng Liu,Xiaoyu Bai,Xingtong Gao,Kai Liu,Aixiang Li,Zijian Lyu,Qiuhong Li
摘要
PolyI:C is an immunomodulatory agent that can be used in immunotherapy, but its transportation in the body is hindered. In this study, a chitosan (CS)-graft-polyethyleneimine (PEI) copolymer (C-g-P) is prepared by an N,N′-carbonyl diimidazole (CDI) coupling method as a drug carrier for PolyI:C and simulated antigen ovalbumin (OVA). The results of FT-IR, 1H NMR, elemental analysis and cytotoxicity studies show that PEI is successfully grafted onto CS, and a low cytotoxicity of C-g-P-x (x = 1, 2, 3) with different PEI grafting rates are obtained. C-g-P-x-PolyI:C/OVA (C-g-P-x-PO) (x = 1, 2, 3) nanoparticles are prepared by combining C-g-P-x (x = 1, 2, 3), PolyI:C and OVA by electrostatic self-assembly. The results of agarose gel electrophoresis show that PolyI:C is well coated by the graft copolymer and protected from nuclease degradation. The results show that C-g-P-1-PO nanoparticles with graft copolymer to PolyI:C (N/P) ratios of 80:1 have the best solution stability, and the OVA encapsulation efficiency is 60.6%. The nanoparticles also have a suitable size and regular shape to be absorbed by cells. In vitro immunoassay results show that PolyI:C and OVA-loaded nanoparticles promote the secretion of tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ). CS-g-PEI is a reliable drug carrier for the delivery of PolyI:C and OVA, and it also provides the possibility to carry other drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI