Application of handheld near infrared spectrometer in quality control of traditional Chinese medicine: Rapid screening and quantitative analysis of Lonicerae Japonicae Flos adulteration

弗洛斯 化学 色谱法 传统医学 生物化学 医学 芦丁 抗氧化剂
作者
Xinying Peng,Xiangyang Yu,Longzhao Lu,Xide Ye,Lingyun Zhong,Wenjun Hu,Shudong Chen,Qian Song,Yefan Cai,Jianwei Yin
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:326: 125215-125215 被引量:2
标识
DOI:10.1016/j.saa.2024.125215
摘要

Traditional Chinese medicine (TCM) prescription, with its intricate formulations and nuanced compositions, is a cornerstone of holistic health practices. However, the expansion of the TCM market has led to a surge in herb adulteration, which significantly undermines the quality and safety of these medicinal products. A case in point is Lonicerae Japonicae Flos (LJF), a widely utilized herb for treating colds, which has been adulterated by the cheaper Lonicerae Flos (LF), thereby affecting its therapeutic effectiveness. Therefore, a method utilizing handheld NIR spectroscopy combined with chemometrics has been developed to provide a portable, real-time solution for the rapid and accurate detection and quantification of adulterants in TCM. By collecting NIR spectra from LJF, LF and adulterated samples (AS), we've established a spectral database enabling deep insights into the correlation between spectral features and sample compositions. Resultantly, a classification model with a 99.58 % cross-validation accuracy, reaching 100 % for test set, effectively identified adulterants. And further spectral similarity analysis and classification identification of samples with different adulteration ratios were carried out. The cross-validation accuracy under the optimal model reached 98.38 %, and the test set accuracy was 99.20 %. In addition, the study extends to quantifying different levels of adulteration, employing 20 standard adulterated samples across a 0-100 % adulteration gradient. Via data preprocessing, feature extraction, and regression techniques, the full concentration prediction models were developed, later refined by segmenting samples based on high and low adulteration ratios. Under the SGFD_CARS_PLS (Savitzky-Golay smoothing with the first derivative_competitive adaptive reweighted sampling_partial least squares) model, exceptional performance was achieved, with a R2p of 0.983, RMSEp of 3.402, and RPDp of 7.757 for the homemade adulterated prediction set. In conclusion, the application of this technology not only improves the efficiency and accuracy of screening, but also has the advantages of low cost, easy operation and rapid results compared with traditional chemical analysis methods. It effectively protects the safety of drugs for consumers, maintains the integrity of the TCM market, and provides a strong technical support for the on-site rapid detection of TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
123444发布了新的文献求助10
3秒前
4秒前
FashionBoy应助勤奋的兔子采纳,获得10
4秒前
wendy发布了新的文献求助10
5秒前
酱子完成签到,获得积分10
5秒前
松鼠15111完成签到,获得积分10
5秒前
鲸鱼发布了新的文献求助10
6秒前
123444完成签到,获得积分20
7秒前
362394935发布了新的文献求助10
9秒前
平常代天完成签到,获得积分10
9秒前
风中醉蝶完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
16秒前
16秒前
18秒前
洗月应助1233333采纳,获得20
18秒前
耶耶耶发布了新的文献求助10
18秒前
领导范儿应助MMLBJK采纳,获得20
19秒前
21秒前
xlx发布了新的文献求助10
22秒前
勤奋的兔子完成签到,获得积分10
23秒前
wz完成签到,获得积分10
23秒前
科研通AI2S应助光仔采纳,获得10
23秒前
25秒前
26秒前
慕青应助xlx采纳,获得10
27秒前
善学以致用应助风中醉蝶采纳,获得10
28秒前
咆哮发布了新的文献求助10
29秒前
形容发布了新的文献求助10
31秒前
34秒前
1230完成签到,获得积分10
34秒前
此时此刻完成签到 ,获得积分10
35秒前
传奇3应助咆哮采纳,获得10
35秒前
37秒前
40秒前
vippp发布了新的文献求助10
40秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097310
求助须知:如何正确求助?哪些是违规求助? 3634941
关于积分的说明 11522139
捐赠科研通 3345334
什么是DOI,文献DOI怎么找? 1838543
邀请新用户注册赠送积分活动 906146
科研通“疑难数据库(出版商)”最低求助积分说明 823492