Improving global soil moisture prediction through cluster-averaged sampling strategy

采样(信号处理) 环境科学 含水量 星团(航天器) 土壤科学 水文学(农业) 水分 气象学 计算机科学 地理 地质学 岩土工程 计算机视觉 滤波器(信号处理) 程序设计语言
作者
Qingliang Li,Qiyun Xiao,Cheng Zhang,Jinlong Zhu,Xiao Chen,Yuguang Yan,Pingping Liu,Wei Shangguan,Zhongwang Wei,Lu Li,Wenzong Dong,Yongjiu Dai
出处
期刊:Geoderma [Elsevier BV]
卷期号:449: 116999-116999 被引量:2
标识
DOI:10.1016/j.geoderma.2024.116999
摘要

Understanding and predicting global soil moisture (SM) is crucial for water resource management and agricultural production. While deep learning methods (DL) have shown strong performance in SM prediction, imbalances in training samples with different characteristics pose a significant challenge. We propose that improving the diversity and balance of batch training samples during gradient descent can help address this issue. To test this hypothesis, we developed a Cluster-Averaged Sampling (CAS) strategy utilizing unsupervised learning techniques. This approach involves training the model with evenly sampled data from different clusters, ensuring both sample diversity and numerical consistency within each cluster. This approach prevents the model from overemphasizing specific sample characteristics, leading to more balanced feature learning. Experiments using the LandBench1.0 dataset with five different seeds for 1-day lead-time global predictions reveal that CAS outperforms several Long Short-Term Memory (LSTM)-based models that do not employ this strategy. The median Coefficient of Determination (R2) improved by 2.36 % to 4.31 %, while Kling-Gupta Efficiency (KGE) improved by 1.95 % to 3.16 %. In high-latitude areas, R2 improvements exceeded 40 % in specific regions. To further validate CAS under realistic conditions, we tested it using the Soil Moisture Active and Passive Level 3 (SMAP-L3) satellite data for 1 to 3-day lead-time global predictions, confirming its efficacy. The study substantiates the CAS strategy and introduces a novel training method for enhancing the generalization of DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芒果好高完成签到,获得积分10
1秒前
1秒前
穆一手完成签到 ,获得积分10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
若有光发布了新的文献求助10
2秒前
jiwen发布了新的文献求助10
5秒前
李爱国应助光亮的依凝采纳,获得10
6秒前
若有光完成签到,获得积分10
8秒前
义气的访波完成签到 ,获得积分10
8秒前
8秒前
lalala完成签到,获得积分10
8秒前
9秒前
动漫大师发布了新的文献求助10
9秒前
罗布林卡发布了新的文献求助10
10秒前
11秒前
12秒前
科研通AI5应助科研大白采纳,获得10
12秒前
15秒前
16秒前
jiwen完成签到,获得积分10
18秒前
19秒前
22秒前
huangjing发布了新的文献求助10
23秒前
24秒前
科研大白完成签到,获得积分20
25秒前
27秒前
我是老大应助罗布林卡采纳,获得10
28秒前
34秒前
李堃完成签到,获得积分10
35秒前
39秒前
40秒前
田様应助姜程璐采纳,获得10
41秒前
汉堡包应助救驾来迟采纳,获得50
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133