TransLSTM: A hybrid LSTM-Transformer model for fine-grained suggestion mining

计算机科学 变压器 人工智能 深度学习 循环神经网络 编码器 卷积神经网络 机器学习 水准点(测量) 自然语言处理 人工神经网络 操作系统 大地测量学 物理 量子力学 电压 地理
作者
Samad Riaz,Amna Saghir,Muhammad Junaid Khan,Hassan Khan,Hamid Saeed Khan,Muhammad Jaleed Khan
标识
DOI:10.1016/j.nlp.2024.100089
摘要

Digital platforms on the internet are invaluable for collecting user feedback, suggestions, and opinions about various topics, such as company products and services. This data is instrumental in shaping business strategies, enhancing product development, and refining service delivery. Suggestion mining is a key task in natural language processing, which focuses on extracting and analysing suggestions from these digital sources. Initially, suggestion mining utilized manually crafted features, but recent advancements have highlighted the efficacy of deep learning models, which automatically learn features. Models like Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Bidirectional Encoder Representations from Transformers (BERT) have been employed in this field. However, considering the relatively small datasets and the faster training time of LSTM compared to BERT, we introduce TransLSTM, a novel LSTM-Transformer hybrid model for suggestion mining. This model aims to automatically pinpoint and extract suggestions by harnessing both local and global text dependencies. It combines the sequential dependency handling of LSTM with the contextual interaction capabilities of the Transformer, thus effectively identifying and extracting suggestions. We evaluated our method against state-of-the-art approaches using the SemEval Task-9 dataset, a benchmark for suggestion mining. Our model shows promising performance, surpassing existing deep learning methods by 6.76% with an F1 score of 0.834 for SubTask A and 0.881 for SubTask B. Additionally, our paper presents an exhaustive literature review on suggestion mining from digital platforms, covering both traditional and state-of-the-art text classification techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修完成签到,获得积分20
1秒前
科研通AI5应助liaomr采纳,获得10
2秒前
ROMANTIC完成签到 ,获得积分10
4秒前
传奇3应助博修采纳,获得10
6秒前
酷炫的黄豆完成签到 ,获得积分10
7秒前
船夫完成签到,获得积分10
9秒前
YamDaamCaa给Xu的求助进行了留言
10秒前
习月阳完成签到,获得积分10
15秒前
杨宁完成签到 ,获得积分10
15秒前
研友_08oa3n完成签到 ,获得积分10
17秒前
22秒前
wmy完成签到,获得积分10
31秒前
31秒前
31秒前
35秒前
典雅三颜完成签到 ,获得积分10
41秒前
i2stay完成签到,获得积分10
42秒前
xdy完成签到 ,获得积分10
48秒前
自然之水完成签到,获得积分10
51秒前
深情安青应助22采纳,获得10
51秒前
earthai完成签到,获得积分10
55秒前
排骨年糕完成签到 ,获得积分10
59秒前
芝麻汤圆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
股价发布了新的文献求助10
1分钟前
畅快的小懒虫完成签到,获得积分10
1分钟前
yanjiuhuzu完成签到,获得积分10
1分钟前
来了来了完成签到 ,获得积分10
1分钟前
匆匆完成签到,获得积分0
1分钟前
李健应助Lynn采纳,获得10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
laber应助科研通管家采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
btcat完成签到,获得积分10
1分钟前
charih完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
Monicadd完成签到 ,获得积分10
1分钟前
CipherSage应助demian采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251