Improved Energy Management with Vehicle Speed and Weight Recognition for Hybrid Commercial Vehicles

汽车工程 能源管理 计算机科学 混合动力汽车 能量(信号处理) 工程类 功率(物理) 数学 量子力学 统计 物理
作者
Minqing Li,Jian Feng,Zhiyu Han
出处
期刊:SAE technical paper series 卷期号:1 被引量:1
标识
DOI:10.4271/2022-01-7052
摘要

<div class="section abstract"><div class="htmlview paragraph">The driving conditions of commercial logistics vehicles have the characteristics of combined urban and suburban roads with relatively fixed mileage and cargo load alteration, which affect the vehicular fuel economy. To this end, an adaptive equivalent consumption minimization strategy (A-ECMS) with vehicle speed and weight recognition is proposed to improve the fuel economy for a range-extender electric van for logistics in this work. The driving conditions are divided into nine representative groups with different vehicle speed and weight statuses, and the driving patterns are recognized with the use of the bagged trees algorithm through vehicle simulations. In order to generate the reference SOC near the optimal values, the optimal SOC trajectories under the typical driving cycles with different loads are solved by the shooting method and the optimal slopes for these nine patterns are obtained. When applying the developed strategy on the road, the driving pattern is timely identified and updated every 5 km by the model using the vehicle speed and driving power data in the past 500 seconds. Based on the recognized results, the reference SOC is then planned by selecting the corresponding pattern’s optimal SOC slope. Finally, a proportional control based on the SOC feedback is employed to track the reference SOC trajectory and optimize the fuel economy. The experimental and simulated results indicate that the proposed strategy has a fuel-saving ranging from 5.87% to 8.25%, with the highest value under the off-load cycle. The results also show that the impact of speed recognition on fuel consumption is more significant than that of load recognition.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
4秒前
Skyllne完成签到 ,获得积分10
8秒前
谨慎的问薇完成签到,获得积分10
8秒前
sxd发布了新的文献求助10
9秒前
10秒前
Maria发布了新的文献求助10
11秒前
科研通AI6应助阿辉采纳,获得10
13秒前
maclogos完成签到,获得积分10
15秒前
黄天完成签到 ,获得积分10
16秒前
Star完成签到,获得积分10
16秒前
田様应助柒柒采纳,获得10
17秒前
zhai完成签到,获得积分10
18秒前
rayqiang完成签到,获得积分0
18秒前
英姑应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
南宫应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
19秒前
正己化人应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
momo应助科研通管家采纳,获得10
19秒前
XY应助科研通管家采纳,获得10
19秒前
19秒前
Owen应助科研通管家采纳,获得10
19秒前
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
正己化人应助科研通管家采纳,获得10
19秒前
miko完成签到 ,获得积分10
19秒前
Felix0917完成签到,获得积分10
20秒前
红糖发糕完成签到 ,获得积分20
21秒前
mrjohn完成签到,获得积分10
22秒前
缥缈的觅风完成签到 ,获得积分10
22秒前
寒江孤影完成签到,获得积分10
23秒前
zqy完成签到 ,获得积分10
24秒前
ask基本上完成签到 ,获得积分10
25秒前
now完成签到,获得积分10
32秒前
暮晓见完成签到 ,获得积分10
33秒前
合适钥匙完成签到,获得积分10
37秒前
Onlyxxl完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498655
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449924
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561