Unsupervised end-to-end infrared and visible image fusion network using learnable fusion strategy

计算机科学 人工智能 图像融合 融合 卷积神经网络 过程(计算) 特征(语言学) 特征提取 计算机视觉 图像(数学) 一般化 残余物 模式识别(心理学) 算法 数学 数学分析 哲学 语言学 操作系统
作者
Yili Chen,Minjie Wan,Yunkai Xu,Xiqing Cao,Xiaojie Zhang,Qian Chen,Guohua Gu
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:39 (12): 2257-2257 被引量:1
标识
DOI:10.1364/josaa.473908
摘要

Infrared and visible image fusion aims to reconstruct fused images with comprehensive visual information by merging the complementary features of source images captured by different imaging sensors. This technology has been widely used in civil and military fields, such as urban security monitoring, remote sensing measurement, and battlefield reconnaissance. However, the existing methods still suffer from the preset fusion strategies that cannot be adjustable to different fusion demands and the loss of information during the feature propagation process, thereby leading to the poor generalization ability and limited fusion performance. Therefore, we propose an unsupervised end-to-end network with learnable fusion strategy for infrared and visible image fusion in this paper. The presented network mainly consists of three parts, including the feature extraction module, the fusion strategy module, and the image reconstruction module. First, in order to preserve more information during the process of feature propagation, dense connections and residual connections are applied to the feature extraction module and the image reconstruction module, respectively. Second, a new convolutional neural network is designed to adaptively learn the fusion strategy, which is able to enhance the generalization ability of our algorithm. Third, due to the lack of ground truth in fusion tasks, a loss function that consists of saliency loss and detail loss is exploited to guide the training direction and balance the retention of different types of information. Finally, the experimental results verify that the proposed algorithm delivers competitive performance when compared with several state-of-the-art algorithms in terms of both subjective and objective evaluations. Our codes are available at https://github.com/MinjieWan/Unsupervised-end-to-end-infrared-and-visible-image-fusion-network-using-learnable-fusion-strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博qb完成签到,获得积分10
刚刚
希望天下0贩的0应助zrs采纳,获得10
刚刚
刚刚
YY发布了新的文献求助10
1秒前
负责的芒果发布了新的文献求助200
3秒前
6秒前
2025顺顺利利完成签到 ,获得积分10
8秒前
Reese完成签到 ,获得积分10
9秒前
东东发布了新的文献求助10
12秒前
负责的芒果完成签到,获得积分10
13秒前
小哇发布了新的文献求助10
15秒前
15秒前
18秒前
研友_nPPzon完成签到,获得积分10
19秒前
666发布了新的文献求助10
19秒前
23秒前
23秒前
科研通AI5应助东东采纳,获得10
23秒前
zhinian完成签到 ,获得积分10
24秒前
超级无心完成签到,获得积分10
26秒前
小哇完成签到,获得积分10
26秒前
ag完成签到,获得积分10
29秒前
那个笨笨完成签到,获得积分10
35秒前
自然的哈密瓜完成签到,获得积分10
37秒前
天天快乐应助wbr采纳,获得10
40秒前
XQQDD完成签到,获得积分10
41秒前
43秒前
自然含羞草完成签到,获得积分10
44秒前
冷傲的迎南完成签到 ,获得积分0
44秒前
yaofan完成签到,获得积分20
46秒前
47秒前
zhouleiwang完成签到,获得积分10
49秒前
yaofan发布了新的文献求助10
49秒前
wbr发布了新的文献求助10
52秒前
liuhuo应助666采纳,获得10
52秒前
53秒前
chen完成签到,获得积分10
56秒前
wbr完成签到,获得积分20
57秒前
飘逸问薇完成签到 ,获得积分10
57秒前
lmt发布了新的文献求助10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323395
关于积分的说明 10214380
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304