亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Remaining Useful Life of Lithium Batteries Based on WOA-VMD and LSTM

电池(电) 计算机科学 功率(物理) 锂离子电池 锂(药物) 可靠性工程 电池容量 人工神经网络 工程类 人工智能 量子力学 医学 物理 内分泌学
作者
Ouyang Ming-san,Peicheng Shen
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:15 (23): 8918-8918 被引量:24
标识
DOI:10.3390/en15238918
摘要

The remaining useful life (RUL) of a lithium-ion battery is directly related to the safety and reliability of the electric system powered by a lithium-ion battery. Accurate prediction of RUL can ensure timely replacement and maintenance of the batteries of the power supply system, and avoid potential safety hazards in the lithium-ion battery power supply system. In order to solve the problem that the prediction accuracy of the RUL of lithium-ion batteries is reduced due to the local capacity recovery phenomenon in the process of the capacity degradation of lithium-ion batteries, a prediction model based on the combination of the whale optimization algorithm (WOA)-variational mode decomposition (VMD) and short-term memory neural network (LSTM) was proposed. First, WOA was used to optimize the VMD parameters, so that the WOA-VMD could fully decompose the capacity signal of the lithium-ion battery and separate the dual component with global attenuation trend and a series of fluctuating components representing the capacity recovery from the capacity signal of the lithium-ion battery. Then, LSTML was used to predict the dual component and fluctuation components, so that LSTM could avoid the interference of the capacity recovery to the prediction. Finally, the RUL prediction results were obtained by stacking and reconstructing the component prediction results. The experimental results show that WOA-VMD-LSTM can effectively improve the prediction accuracy of the RUL of lithium-ion batteries. The average cycle error was one cycle, the average RMSE was less than 0.69%, and the average MAPE was less than 0.43%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的苡完成签到,获得积分10
2秒前
3秒前
001完成签到,获得积分10
13秒前
滕皓轩完成签到 ,获得积分20
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
3分钟前
研友_VZG7GZ应助鲜艳的诗翠采纳,获得10
3分钟前
友好的白柏完成签到 ,获得积分10
3分钟前
李健的小迷弟应助Sandy采纳,获得10
3分钟前
人谷完成签到 ,获得积分10
3分钟前
人谷呀完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
华仔应助羽生结弦的馨馨采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
qqq完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
早睡一哥完成签到,获得积分10
7分钟前
002完成签到,获得积分10
7分钟前
包容的剑完成签到 ,获得积分10
7分钟前
7分钟前
003完成签到,获得积分10
7分钟前
淡淡醉波wuliao完成签到 ,获得积分10
7分钟前
7分钟前
Sandy发布了新的文献求助10
7分钟前
7分钟前
7分钟前
Sandy完成签到,获得积分10
7分钟前
传奇3应助天空之城采纳,获得10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229