QSAR analysis of pyrimidine derivatives as VEGFR-2 receptor inhibitors to inhibit cancer using multiple linear regression and artificial neural network

数量结构-活动关系 人工神经网络 血管生成 线性回归 血管内皮生长因子 逐步回归 血管内皮生长因子受体 线性模型 人工智能 数学 生物 计算机科学 生物信息学 统计 癌症研究
作者
Fariba Masoomi Sefiddashti,Saeid Asadpour,Hedayat Haddadi,Shima Ghanavati Nasab
出处
期刊:Research in Pharmaceutical Sciences [Medknow]
卷期号:16 (6): 596-596 被引量:1
标识
DOI:10.4103/1735-5362.327506
摘要

In this study, the pharmacological activity of 33 compounds of furopyrimidine and thienopyrimidine as vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors to inhibit cancer was investigated. The most important angiogenesis inducer is VEGF endothelial growth factor, which exerts its activity by binding to two tyrosine kinase receptors called VEGFR-1 and VEGFR-2. Due to the critical role of VEGF in the pathological angiogenesis of this molecule, it is a valuable therapeutic target for anti-angiogenesis therapies.After calculating descriptors using SPSS software and stepwise selection method, 5 descriptors were used for modeling in multiple linear regression (MLR) and artificial neural network (ANN). The calibration series and the test series in this study included 26 and 7 combinations, respectively.The performance evaluation of models was determined by the R2, RMSE, and Q2 statistic parameters. The R2 values of MLR and ANN models were 0.889 and 0.998, respectively. Also, the value of RMSE in the ANN model was lower and its Q2 value was higher than the MLR model.The results were evaluated by different statistical methods and it was concluded that the nonlinear neural network method is powerful to predict the pharmacological activity of similar compounds, and because of the complex and nonlinear relationships, the MLR was not capable of establishing a good model with high predictive power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDS完成签到,获得积分10
刚刚
YY发布了新的文献求助10
2秒前
John发布了新的文献求助10
2秒前
Faitlux应助春天在这李采纳,获得20
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
6秒前
姜夔完成签到,获得积分10
6秒前
6秒前
科研通AI5应助思7采纳,获得10
9秒前
夜夜夜完成签到,获得积分10
12秒前
ffff发布了新的文献求助10
13秒前
黑白应助前行的灿采纳,获得20
13秒前
Wangyingjie5发布了新的文献求助10
16秒前
16秒前
小二郎应助文右三采纳,获得10
17秒前
17秒前
18秒前
听话的箴应助mumu采纳,获得10
18秒前
19秒前
二一发布了新的文献求助10
19秒前
20秒前
完美世界应助DAMAOMI采纳,获得10
21秒前
Shinkai39完成签到,获得积分10
22秒前
思7发布了新的文献求助10
23秒前
安东尼发布了新的文献求助10
23秒前
26秒前
完美大神完成签到 ,获得积分10
26秒前
itachi发布了新的文献求助30
27秒前
jiangci完成签到,获得积分10
30秒前
30秒前
洛依1213发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798163
求助须知:如何正确求助?哪些是违规求助? 3343617
关于积分的说明 10316986
捐赠科研通 3060333
什么是DOI,文献DOI怎么找? 1679484
邀请新用户注册赠送积分活动 806627
科研通“疑难数据库(出版商)”最低求助积分说明 763282