Value of MRI texture analysis for predicting new Gleason grade group

纹理(宇宙学) 医学 价值(数学) 磁共振成像 放射科 核医学 计算机科学 数学 人工智能 统计 图像(数学)
作者
Xiaojing He,Hui Xiong,Haiping Zhang,Xinjie Liu,Jun Zhou,Dajing Guo
出处
期刊:British Journal of Radiology [Wiley]
卷期号:94 (1121) 被引量:3
标识
DOI:10.1259/bjr.20210005
摘要

To explore the potential value of multiparametric magnetic resonance imaging (mpMRI) texture analysis (TA) to predict new Gleason Grade Group (GGG). Fifty-eight lesions of fifty patients who underwent mpMRI scanning, including T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) prior to trans-rectal ultrasound (TRUS)-guided core prostate biopsy, were retrospectively enrolled. TA parameters were obtained by the postprocessing software, and each lesion was assigned to its corresponding GGG. TA parameters derived from T2WI and DWI were statistically analyzed in detail. Energy, inertia, and correlation derived from apparent diffusion coefficient (ADC) maps and T2WI had a statistically significant difference among the five groups. Kurtosis, energy, inertia, correlation on ADC maps and Energy, inertia on T2WI were moderately related to the GGG trend. ADC-energy and T2-energy were significant independent predictors of the GGG trend. ADC-energy, T2WI-energy, and T2WI-correlation had a statistically significant difference between GGG1 and GGG2-5. ADC-energy were significant independent predictors of the GGG1. ADC-energy, T2WI-energy, and T2WI-correlation showed satisfactory diagnostic efficiency of GGG1 (area under the curve (AUC) 84.6, 74.3, and 83.5%, respectively), and ADC-energy showed excellent sensitivity and specificity (88.9 and 95.1%, respectively). TA parameters ADC-energy and T2-energy played an important role in predicting GGG trend. Both ADC-energy and T2-correlation produced a high diagnostic power of GGG1, and ADC-energy was perfect predictors of GGG1. TA parameters were innovatively used to predict new GGG trend, and the predictive factors of GGG1 were screen out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依紫发布了新的文献求助10
1秒前
香蕉友绿完成签到,获得积分20
2秒前
wfy发布了新的文献求助10
3秒前
菠萝完成签到 ,获得积分10
4秒前
sanyecai发布了新的文献求助10
5秒前
傲娇皮皮虾完成签到 ,获得积分10
7秒前
狂奔的蜗牛完成签到,获得积分10
9秒前
Liuu完成签到,获得积分10
9秒前
英俊的香菇完成签到 ,获得积分10
9秒前
LA排骨完成签到,获得积分10
11秒前
脑洞疼应助依紫采纳,获得10
12秒前
坦率的惊蛰完成签到,获得积分10
13秒前
sanyecai完成签到,获得积分10
14秒前
饼子完成签到 ,获得积分10
14秒前
小熊发布了新的文献求助10
14秒前
15秒前
taojian完成签到,获得积分10
16秒前
gexzygg应助benben采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
扶石完成签到,获得积分10
17秒前
20秒前
20秒前
崔佳鑫完成签到 ,获得积分10
20秒前
erin发布了新的文献求助10
20秒前
假如完成签到,获得积分10
21秒前
关倩倩完成签到,获得积分10
21秒前
22秒前
mysilicon完成签到,获得积分10
22秒前
xxl发布了新的文献求助10
22秒前
23秒前
聪明的醉卉完成签到,获得积分10
23秒前
朴素太阳发布了新的文献求助10
24秒前
Ava应助杨隆君采纳,获得10
24秒前
长情霸完成签到,获得积分10
24秒前
万邦德完成签到,获得积分10
24秒前
24秒前
Muller完成签到,获得积分10
25秒前
高贵的映安完成签到,获得积分10
25秒前
huangbing123完成签到 ,获得积分10
25秒前
SAY完成签到,获得积分10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4257617
求助须知:如何正确求助?哪些是违规求助? 3790166
关于积分的说明 11891066
捐赠科研通 3439036
什么是DOI,文献DOI怎么找? 1887211
邀请新用户注册赠送积分活动 938380
科研通“疑难数据库(出版商)”最低求助积分说明 843914